Exercise no. 2

MULTI-STEP INPUT DESIGN

The following equation describes aircraft motion:

$$
\left[\begin{array}{c}
\dot{u} \tag{2.1}\\
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
X_{u} & X_{\alpha} & X_{q} & -g \cos \left(\Theta_{0}\right) \\
Z_{u} & Z_{\alpha} & Z_{q}+1 & g \sin \left(\Theta_{0}\right) \\
M_{u} & M_{\alpha} & M_{q} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
u \\
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
X_{\delta_{E}} \\
Z_{\delta_{E}} \\
M_{\delta_{E}} \\
0
\end{array}\right] \delta_{E}
$$

where: u - longitudinal velocity, $\mathrm{m} / \mathrm{s} ; \alpha$ - angle of attack, $\mathrm{rad} ; q$ - pitch rate, $\mathrm{rad} / \mathrm{s} ; \theta$ pitch angle, $\mathrm{rad} ; \delta_{E}$ - elevator deflection, rad. A-priori values for stability and control derivatives are given as:
$X_{u}=-0.04,1 / s ;$
$X_{\alpha}=5.45, \mathrm{~m} / \mathrm{s}^{2}$;
$X_{q}=-0.40, \mathrm{~m} / \mathrm{s} ;$
$X_{\delta_{E}}=-0.60, \mathrm{~m} / \mathrm{s}^{2} / \mathrm{rad} ;$
$Z_{u}=-0.01,1 / s ;$
$Z_{\alpha}=-1.30, \mathrm{~m} / \mathrm{s}^{2} ;$
$Z_{q}=-0.02, \mathrm{~m} / \mathrm{s}$;
$Z_{\delta_{E}}=-0.09, \mathrm{~m} / \mathrm{s}^{2} / \mathrm{rad} ;$
$M_{u}=0.01, \mathrm{~m} / \mathrm{s} ;$
$M_{\alpha}=-6.75, \mathrm{~m}^{2} / \mathrm{s}^{2}$;
$M_{q}=-3.00, m^{2} / s ;$
$M_{\delta_{E}}=10.60, \mathrm{~m}^{2} / \mathrm{s}^{2} / \mathrm{rad}$.
Pitch angle in the trim point is $\Theta_{0}=0 \mathrm{rad}$, whilst gravitational acceleration $g=$ $9.80665 \mathrm{~m} / \mathrm{s}^{2}$
Based on the given model:

- find identifiability ranges of stability and control derivatives,
- find switching times for short-period mode $\Delta t_{S P}$ and phugoid mode $\Delta t_{P H}$,
- present time histories of the aircraft response for the designed excitations.

References

[1] Jategaonkar R.V., Flight Vehicle System Identification: A time domain methodology, 2 ed., AIAA, Reston, VA, 2015

