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Preface

The subject of contact mechanics may be said to have started in 1882 with the
publication by Heinrich Hertz of his classic paper On the contact of elastic solids.
At that time Hertz was only 24, and was working as a research assistant to
Helmholtz in the University of Berlin. His interest in the problem was aroused
by experiments on optical interference between glass lenses. The question arose
whether elastic deformation of the lenses under the action of the force holding
them in contact could have a significant influence on the pattern of interference
fringes. It is easy to imagine how the hypothesis of an elliptical area of contact
could have been prompted by observations of interference fringes such as those
shown in Fig. 4.1 (p. 86). His knowledge of electrostatic potential theory then
enabled him to show, by analogy, that an ellipsoidal - Hertzian - distribution of
contact pressure would produce elastic displacements in the two bodies which
were compatible with the proposed elliptical area of contact.

Hertz presented his theory to the Berlin Physical Society in January 1881
when members of the audience were quick to perceive its technological importance
and persuaded him to publish a second paper in a technical journal. However,
developments in the theory did not appear in the literature until the beginning
of this century, stimulated by engineering developments on the railways, in
marine reduction gears and in the rolling contact bearing industry.

The Hertz theory is restricted to frictionless surfaces and perfectly elastic
solids. Progress in contact mechanics in the second half of this century has been
associated largely with the removal of these restrictions. A proper treatment of
friction at the interface of bodies in contact has enabled the elastic theory to be
extended to both slipping and rolling contact in a realistic way. At the same time
development of the theories of plasticity and linear viscoelasticity have enabled
the stresses and deformations at the contact of inelastic bodies to be examined.
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Somewhat surprisingly, in view of the technological importance of the subject,
books on contact mechanics have been few. In 1953 the book by L.A.Galin,
Contact Problems in the Theory of Elasticity, appeared in Russian summarising
the pioneering work of Muskhelishvili in elastic contact mechanics. An up-to-date
and thorough treatment of the same field by Gladwell, Contact Problems in the
Classical Theory of Elasticity, was published in 1980. These books exclude rolling
contacts and are restricted to perfectly elastic solids. Analyses of the contact of
inelastic solids are scattered through the technical journals or are given brief
treatment in the books on the Theory of Plasticity. The aim of the present book,
however, is to provide an introduction to most aspects of the mechanics of
contact between non-conforming surfaces. Bodies whose surfaces are non-
conforming touch first at a point or along aline and, even under load, the dimen-
sions of the contact patch are generally small compared with the dimensions of
the bodies themselves. In these circumstances the contact stresses comprise
a local ‘stress concentration’ which can be considered independently of the
stresses in the bulk of the two bodies. This fact was clearly appreciated by Hertz
who wrote: ‘We can confine our attention to that part of each body which is
very close to the point of contact, since here the stresses are extremely great
compared with those occurring elsewhere, and consequently depend only to the -
smallest extent on the forces applied to other parts of the bodies.” On the other
hand, bodies whose surfaces conform to each other are likely to make contact
over an area whose size is comparable with the significant dimensions of the two
bodies. The contact stresses then become part of the general stress distribution
throughout the bodies and cannot be separated from jt. We shall not be concerned
with conformal contact problems of this sort.

This book is written by an engineer primarily for the use of professional
engineers. Where possible the mathematical treatment is tailored to the level of
a first Degree in Engineering. The approach which has been followed is to build
up stress distributions by the simple superposition of basic ‘point force’ solutions
- the Green’s function method. Complex potentials and integral transform
methods, which have played an important role in the modern development of
elastic contact stress theory, are only mentioned in passing. In this respect the
more mathematically sophisticated reader will find Gladwell’s book a valuable
complement to Chapters 2-5.

This is a user’s book rather than a course text-book. The material is grouped
according to application: stationary contacts, sliding, rolling and impact, rather
than the usual academic division into elastic, plastic and viscoelastic problems.
The stresses and deformations in an elastic half-space under the action of surface
tractions, which provide the theoretical basis for the solutions of elastic contact
problems, have been treated in Chapters 2 and 3. Results derived there are used



Preface xi

throughout the book. These chapters may be regarded as appendices which are
not necessary for a qualitative understanding of the later chapters.

In my own study of contact mechanics, which has led to this book, I owe
a particular debt of gratitude to R.D. Mindlin, whose pioneering work on the
influence of tangential forces on elastic contacts stimulated my early interest in
the subject, and to D. Tabor whose revealing experiments and physical insight
into surface interactions gave rise to many challenging contact problems.

Several chapters of the book have been read and improved by colleagues
whose knowledge and experience in those areas greatly exceeds my own: Dr J.R.
Barber, Prof. J. Duffy, Prof. G.M. Gladwell, Dr J.A. Greenwood, Prof. J.J.
Kalker, Prof. S.R. Reid, Dr W.J. Stronge and Dr T.R. Thomas. The complete
manuscript was read by Dr S.L. Grassie who made many valuable suggestions for
improvements in presentation. Responsibility for errors, however, is mine alone
and I should be very grateful if readers would inform me of any errors which
they detect.

The diagrams were carefully drawn by Mr A. Bailey and the manuscript was
most etficiently typed by Mrs Rosalie Orriss and Mrs Sarah Cook. Finally my
wife assisted in innumerable ways; without her patience and encouragement the
book would never have reached completion.

Cambridge K. L. Johnson
1984






1

Motion and forces at a point of contact

1.1 Frame of reference

This book is concerned with the stresses and deformation which arise
when the surfaces of two solid bodies are brought into contact. We distinguish
between conforming and non-conforming contacts. A contact is said to be
conforming if the surfaces of the two bodies ‘fit’ exactly or even closely
together without deformation. Flat slider bearings and journal bearings are
examples of conforming contact. Bodies which have dissimilar profiles are
said to be non-conforming. When brought into contact without deformation
they will touch first at a point - ‘point contact’ - or along a line - ‘line contact’.
For example, in a ball-bearing the ball makes point contact with the races,
whereas in a roller bearing the roller makes line contact. Line contact arises
when the profiles of the bodies are conforming in one direction and non-
conforming in the perpendicular direction. The contact area between non-
conforming bodies is generally small compared with the dimensions of the
bodies themselves; the stresses are highly concentrated in the region close to
the contact zone and are not greatly influenced by the shape of the bodies at
a distance from the contact area. These are the circumstances with which we
shall be mainly concerned in this book.

The points of surface contact which are found in engineering practice
frequently execute complex motions and are called upon to transmit both
forces and moments. For example, the point of contact between a pair of gear
teeth itself moves in space, while at that point the two surfaces move relative
to each other with a motion which combines both rolling and sliding. In this
preliminary chapter we begin by defining a frame of reference in which the
motions and forces which arise in any particular circumstances can be
generalised. This approach enables the problems of contact mechanics to be
formulated and studied independently of technological particularities and,
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further, it facilitates the application of the results of such studies to the widest
variety of engineering problems.

Non-conforming surfaces brought into contact by a negligibly small force
touch at a single point. We take this point O as origin of rectangular coordinate
axes Oxyz. The two bodies, lower and upper as shown in Fig. 1.1, are denoted
by suffixes 1 and 2 respectively. The Oz axis is chosen to coincide with the
common normal to the two surfaces at O. Thus the x-p plane is the tangent
plane to the two surfaces, sometimes called the osculating plane. The directions
of the axes Ox and Oy are chosen for convenience to coincide, where possible,
with axes of symmetry of the surface profiles.

Line contact, which arises when two cylindrical bodies are brought into
contact with their axes parallel, appears to constitute a special case. Their
profiles are non-conforming in the plane of cross-section, but they do conform
along a line of contact in the plane containing the axes of the cylinders. Never-
theless this important case is covered by the general treatment as follows: we
choose the x-axis to lie in the plane of cross-section and the y-axis parallel to
the axes of the cylinders.

The undeformed shapes of two surfaces are specified in this frame by the
functions:

71 =fi(x,»)
z,=f2(x,¥)
Thus the separation between wnem before loading is given by

h=z+z2,=f(x,y) (.1

Fig. 1.1. Non-conforming surfaces in contact at O.

Common




Relative motion of the surfaces - sliding, rolling and spin 3

1.2 Relative motion of the surfaces - sliding, rolling and spin
The motion of a body at any instant of time may be defined by the

linear velocity vector of an arbitrarily chosen point of reference in the body
together with the angular velocity vector of the body. If we now take reference
points in each body coincident with the point of contact O at the given instant,
body (1) has linear velocity V, and angular velocity £2,, and body (2) has linear
velocity V, and angular velocity £,. The frame of reference defined above
moves with the linear velocity of the contact point V; and rotates with angular
velocity £ in order to maintain its orientation relative to the common normal
and tangent plane at the contact point.

Within the frame of reference the two bodies have linear velocities at O:

vi=V,—Vp } (12)
v, =V,—Vy

and angular velocities:
@1=Eh Lo } (1.3)
Wy, =8Q,—8p

We now consider the cartesian components of vy, v,, w; and w,. If contact is
continuous, so the surfaces are neither separating nor overlapping, their velocity
components along the common normal must be equal, viz:

Vai=Va=Vo
ie. (1.4)
Vz1= VU2 = 0
We now define sliding as the relative linear velocity between the two surfaces
at O and denote it by Av.

Av = Vi— Vy = Vl_' Vz
The sliding velocity has components:
Avy = vy Uy
and (1.5)
Avy = Uyl - Uy2
Rolling is defined as a relative angular velocity between the two bodies about

an axis lying in the tangent plane. The angular velocity of roll has
components:

Awy = Wx1 ™ Wyy =y Qx2
and (1.6)

A(,z)y = (x)yl - (x)y2 = le - Qy2
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Finally spin motion is defined as a relative angular velocity about the common
normal, viz..

Aw, = W1~ Wy =2y — Oy (17)

Any motion of contacting surfaces must satisfy the condition of continuous
contact (1.4) and can be regarded as the combination of sliding, rolling and spin.
For example, the wheels of a vehicle normalily roll without slide or spin. When it

turns a corner spin is introduced; if it skids with the wheels locked, it slides
without rolling.

13 Forces transmitted at a point of contact

The resultant force transmitted from one surface to another through
a point of contact is resolved into a normal force P acting along the common
normal, which generally must be compressive, and a tangential force Q in the
tangent plane sustained by friction, The magnitude of Q must be less than or,
in the limit, equal to the force of limiting friction, i.e.

o<spp (1.8)
where u is the coefficient of limiting friction. Q is resolved into components
Oy and Q,, parallel to axes Ox and Oy. In a purely sliding contact the tangential
force reaches its limiting value in a direction opposed to the sliding velocity,

Fig. 1.2. Forces and moments acting on contact area S.




Surface tractions S

from which:
Av
Qx:—_x
4] (1.9)
.= Av,, )
Y |av]

The force transmitted at a nominal point of contact has the effect of compress-
ing deformable solids so that they make contact over an area of finite size, As
a result it becomes possible for the contact to transmit a resultant moment in
addition to a force (Fig. 1.2). The components of this moment M, and M, are
defined as rolling moments. They provide the resistance to a rolling motion
commonly called ‘rolling friction’ and in most practical problems are small
enough to be ignored.

The third component M, , acting about the common normal, arises from
friction within the contact area and is referred to as the spin moment. When spin
accompanies rolling the energy dissipated by the spin moment is combined with
that dissipated by the rolling moments to make up the overall rolling resistance.

At this point it is appropriate to define free rolling (‘inertia rolling’ in the
Russian literature). We shall use this term to describe a rolling motion in which
spin is absent and where the tangential force Q at the contact point is zero.

This is the condition of the unpowered and unbraked wheels of a vehicle if
rolling resistance and bearing friction are neglected; it is in contrast with the
driving wheels or braked wheels which transmit sizable tangential forces at
their points of contact with the road or rail.

1.4 Surface tractions

The forces and moments which we have just been discussing are trans-
mitted across the contact interface by surface tractions at the interface. The
normal traction (pressure) is denoted by p and the tangential traction (due to
friction) by g, shown acting positively on the lower surface in Fig. 1.2. While
nothing can be said at this stage about the distribution of p and g over the area
of contact S, for overall equilibrium:

P= ds 1.10
L” (1.10)

Qx=f 4, S, Qy:f g, S (1.11)
S S

With non-conforming contacts (including cylinders having parallel axes) the
contact area lies approximately in the x-y plane and slight warping is neglected,



Motion and forces at a point of contact 6

whence

Mx=f py dS, My=—fpde (1.12)
S S

and

M, = f (@,% —qxy) S (1.13)
S

When the bodies have closely conforming curved surfaces, as for example in
a deep-groove ball-bearing, the contact area is warped appreciably out of the
tangent plane and the expressions for M, and M,, (1.12) have to be modified
to include terms involving the shear tractions ¢, and g,,. Examples of the treat-
ment of such problems are given later in §8.5.

To illustrate the approach to contact kinematics and statics presented in this
chapter, two examples from engineering practice will be considered briefly.

1.5 Examples

Example (1): involute spur gears

The meshing of a pair of involute spur gear teeth is shown in Fig. 1.3(a).
The wheels rotate about centres C; and C,. The line I,/ is the common tangent

Fig. 1.3. Contact of involute spur gear teeth.
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to the two base circles from which the involute profiles are generated. P is the
pitch point. The teeth are shown in contact at O, which is taken as origin of our
coordinate frame of reference. The common normal to the two teeth through
O coincides with 71/, and is taken as the z-axis. The x-axis lies in the tangent
plane and is taken to be in the plane of rotation as shown.

The point of contact moves along the path 7,7, with a velocity ¥, : points on
the two teeth coincident with O have velocities V; and ¥, perpendicular to the
radial lines C; 0 and C, 0. Since the path of contact is straight, the frame of
reference does not rotate (£, = 0); the wheels rotate with angular velocities
—wj and w,. (Since the motion lies entirely in the x-z plane, we can omit the
suffix y from the angular velocities and the suffix x from the linear velocities.)

Velocities within the frame of reference are shown in Fig. 1.3(b). Applying
equation (1.4) for continuity of contact:

Vicosa=V,cosff=Tp
ie,

W (Ci11) = wa(Cr1y)
therefore

w, G GP

2=l (1.14)
[63X] C212 C2P

Aw=—(w;+wy) - (1.15)
The velocity of sliding is
Av=v;,— v,
=V sina— V, sinf
= w3(01) — w,(01,)
= wy(PI; + OP) — w,(PI, — OP)
ie.
Av = (w;+ w,)OP (1.16)
since triangles C,PI, and C, PI, are similar.

Thus the velocity of sliding is equal to the angular velocity of rolling multiplied
by the distance of the point of contact from the pitch point. The direction of
sliding changes from the arc of approach to the arc of recess and at the pitch
point there is pure roiling.

We note that the motion of rolling and sliding at a given instant in the meshing

cycle can be reproduced by two circular discs of radii /;0 and I, O rotating with
angular velocities —c, and +w, about fixed centres at /; and 7,. This is the basis
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of the disc machine, originally developed by Merritt (1935), to simulate the
conditions of gear tooth contact in the simple laboratory test. Since the radii
of curvature of the involute teeth at O are the same as those of the discs, ;0
and I, 0, the contact stresses under a given contact load are also simulated by
the disc machine. The obvious departure from similarity arises from replacing
the cyclic behaviour of tooth meshing by a steady motion which reproduces the
conditions at only one instant in the meshing cycle.

Example (2} angular contact ball-bearings

An axial cross-section through an angular contact ball-bearing is given
in Fig. 1.4, showing a typical ball. The inner and outer races, and the cage
(i.e. ball centre C) rotate about the bearing axis with angular velocities £2,, £,
and Q. respectively. To bring to rest our standard frames of reference, which
move with the points of contact between the races and the ball O; and O, , we
subtract the cage speed from the race speeds, thus

W= —Q, wW=8Q—Q,
Although the two contact points O; and O, are frequently assumed to lie at
opposite ends of a ball diameter, they will not do so in general and are deliber-
ately displaced from a diameter in Fig. 1.4. Thus the two sets of axes O;x;y;z;
and O, XY, 2, Will not be in line, If the ball rolls without sliding at the two
points of contact, the axis of rotation of the ball (in our prescribed frames of

Fig. 1.4. Angular contact ball bearing, showing contact of the ball (3)
with the inner race (1) at O, and with the outer race (2) at O,.

() ®)
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reference) must lie in the y-z plane. Its direction in that plane, however, remains
to be determined. It is drawn in an arbitrary direction in Fig. 1.4(a), inclined at
angle y;, to O;y; and Y, to Oy y,. The axes O;y; and O, y,, intersect the bearing
axis at points 4 and B, and at angles o; and «a, respectively.

For no sliding at O;:

Ux3 = Ux1
ie.
w3t cos Yi = w1 R
Similarly at O,
wW3? oS Yo = Wk,
Thus, eliminating w3,
w2 _Ricosvo (1.17)
w1 R, cosyi
If the points of contact are diametrically opposed, the contact angles ¢; and &,
are equal so that y; = Y. Only then is the ratio of the race speeds, (1.17),
independent of the direction of the axis of rotation of the ball.
We now examine the spin motion at O;. The angular velocity of spin

(sz)i = Wz1 T W3
= (o7 sin @; ~ w3 sin Y

ie.

Ry r
(8 = w1~ (AOi tan lpl) (1.18)
From this expression we see that the spin motion at O; will vanish if the axis of
rotation of the ball passes through point 4 on the axis of the bearing (whereupon
tan y; = r/(40y)). Similarly, for spin to be absent at O, the axis of rotation of
the ball must intersect the bearing axis at B. For spin to be absent at both points
of contact, either the two tangents O;y; and O,y are parallel to the bearing axis,
as in a simple radial bearing, or O; and O, are so disposed that O;y; and O, y,
intersect the bearing axis at a common point, This latter circumstance is achieved
in a taper-roller bearing where the conical races have a common apex on the
bearing axis, but never occurs in an angular contact ball-bearing.

We turn now to the forces acting on the ball shown in Fig. 1.4(b). The bearing
is assumed to carry a purely axial load so that each ball is identically loaded. Each
contact point transmits a normal force P; , and a tangential force (Qy); o-
Pressure and friction between the ball and cage pockets introduce small tangential
forces in the x-direction at O; and O, which are neglected in this example. The
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rolling friction moments (M, ); , will be neglected also, but the spin moments
(M,); , play an important role in governing the direction of the axis of rotation
of the ball. At high rotational speeds the ball is subjected to an appreciable
centrifugal force F and a gyroscopic moment Mg.

Consider the equilibrium of the ball; taking moments about the line 0;0,,, it
follows that

(Mz)i = (Mz)o (1~19)
But the positions of the contact points O, and O, and the direction of the ball
axis Y; are not determined by statics alone. In order to proceed further with the
analysis it is necessary to know how the tangential forces (Q,); , and the spin
moments M; , are related to the motions of rolling and spin at O; and O,.
This question will be considered in Chapter 8, §4.



2

Line loading of an elastic half-space

2.1 The elastic half-space

Non-conforming elastic bodies in contact whose deformation is suffi-
ciently small for the linear small strain theory of elasticity to be applicable
inevitably make contact over an area whose dimensions are small compared
with the radii of curvature of the undeformed surfaces. The contact stresses
are highly concentrated close to the contact region and decrease rapidly in
intensity with distance from the point of contact, so that the region of practical
interest lies close to the contact interface. Thus, provided the dimensions of the
bodies themselves are large compared with the dimensions of the contact area,
the stresses in this region are not critically dependent upon the shape of the
bodies distant from the contact area, nor upon the precise way in which they
are supported. The stresses may be calculated to good approximation by con-
sidering each body as a semi-infinite elastic solid bounded by a plane surface:
i.e. an elastic half-space. This idealisation, in which bodies of arbitrary surface
profile are regarded as semi-infinite in extent and having a plane surface, is made
almost universally in elastic contact stress theory. It simplifies the boundary
conditions and makes available the large body of elasticity theory which has
been developed for the elastic half-space.

In this chapter, therefore, we shall study the stresses and deformations in an
elastic half-space loaded one-dimensionally over a narrow strip (‘line loading’).
In our frame of reference the boundary surface is the x-y plane and the z-axis
is directed into the solid. The loaded strip lies parallel to the y-axis and has
a width (a + b) in the x-direction; it carries normal and tangential tractions
which are a function of x only. We shall assume that a state of plane strain
(e, = 0) is produced in the half-space by the line loading.

For the assumption of plane strain to be justified the thickness of the solid
should be large compared with the width of the loaded region, which is usually



Line loading of an elastic half-space 12

the case, The other extreme of plane stress (g, = 0) would only be realised by
the edge loading of a plate whose thickness is small compared with the width
of the loaded region, which is a very impractical situation,

The elastic half-space is shown in cross-section in Fig. 2.1. Surface tractions
p(x) and g(x) act on the surface over the region from x = —b to x = ¢ while
the remainder of the surface is free from traction. It is required to find the stress
components oy, o, and 7,, at all points throughout the solid and the compo-
nents u, and u, of the elastic displacement of any point from its undeformed
position, In particular we are interested in the deformed shape of the surface
ii,(x) (the over bar is used throughout to denote values of the variable at the
surface z = 0).

The reader is referred to Timoshenko & Goodier: Theory of Elasticity,
McGraw-Hill, 1951, for a derivation of the elastic equations. For convenience
they are summarised below. The stress components must satisfy the equilibrium
equations throughout the solid:

0

ax 0z @
00, 0Ty, '
0z 0x

The corresponding strains €,, €, and v,, must satisfy the compatibility condition:
3’ €x 3? € 9* Vxz

9z2  3x?*  oxoz

(2.2)

Fig. 2.1
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where the strains are related to the displacements by

= E, =Tt g, =R @3
Under conditions of plane strain,

€,=0

0, = (o, + 0;) 2.9

whereupon Hooke’s law, relating the stresses to the strains, may be written:

1
& == {(1=41)0, = v(1 +9)0;]
1
& =7 {1 —=v¥)o,—v(1 +v)o,} (2.5)
1 2(1+v)
Txz = Esz = T Txz
If a stress function ¢(x, z) is defined by:
3%¢ 3%¢ 3%¢
Ox=—=, 0,=7——=, Ty=—"—— 2.6
ozt Y axaz (2.6)

then the equations of equilibrium (2.1), compatibility (2.2) and Hooke’s law
(2.5) are satisfied, provided that ¢(x, z) satisfies the biharmonic equation:
82 9%\ (0%¢ 0%¢
{axz 0z% laxz 0z? } @7)
In addition the boundary conditions must be satisfied. For the half-space

shown in Fig. 2.1 these are as follows. On the boundary z = 0, outside the
loaded region, the surface is free of stress, i.e.

0, =7, =0, x<—-b, x>+a (2.8)
Within the loaded region

0, =—p(x

- Pex) } —b<x<a (2.9)

Txz = —q(x) ]

and the tangential and normal displacements are i, (x) and iz, (x). Finally, at
a large distance from the loaded region (x, z > =) the stresses must become
vanishingly small (o, 0;, Txz > 0).

To specify a particular problem for solution two of the four quantities p(x),
q(x), i1, (x) and iz, (x) must be prescribed within the loaded region. Various
combinations arise in different contact problems. For example, if a rigid punch
is pressed into contact with an elastic half-space the normal displacement iz, (x)
is prescribed by the known profile of the punch. If the interface is frictionless
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the second boundary condition is that the shear traction g(x) is zero. Alter-
natively, if the surface adheres to the punch without slip at the interface, the
tangential displacement i1, (x) is specified whilst g(x) remains to be found.
Special boundary conditions arise if the punch is sliding on the surface of the
half-space with a coefficient of friction u. Only iz,(x) is specified but a second
boundary condition is provided by the relationship:

q(x) = *up(x)
In some circumstances it is convenient to use cylindrical polar coordinates
(r,0,y). The corresponding equations for the stress components o,, g5 and
Ty, Strain components €, , €5 and y,¢ and radial and circumferential displacements
u, and ug will now be summarised.
The stress function ¢(r, §) must satisfy the biharmonic equation:

(a_2+li+_1 a_z)(@ﬁla_‘fﬁ_l@):o (2.10)
ort ror r?200% \or* ror r?06°
where
B 1 a¢+ _1_ 2%¢
2 2

0. =~ — T
" ror 2o

®
06:;; (211)

B a(1a¢>)
T 5\ a0

The strains are related to the displacements by

du,
€, =—
T o
u, 1 aug .
_r, 270 2.12
K r r 06 ( )
1 au, aug Ug
= — 4 — =
vro r 06 or ¥

Equations (2.4) and (2.5) for the stress-strain relationships remain the same
with x and z replaced by r and 6.

We shall now proceed to discuss the solutions to particular problems relevant
to elastic contact stress theory,

2.2 Concentrated normal force
In this first problem we investigate the stresses produced by a concen-
trated force of intensity P per unit length distributed along the y-axis and acting
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in a direction normal to the surface. This loading may be visualised as that
produced by a knife-edge pressed into contact with the half-space along the
y-axis (see Fig. 2.2).

This problem was first solved by Flamant (1892). It is convenient to use
polar coordinates in the first instance. The solution is given by the stress function

¢(r,0) = Arf sin 6 (2.13)

where A is an arbitrary constant.
Using equations (2.11), the stress components are

Yy cos @

o,= —

r r (2.19)
0g =79 =0

This system of stresses is referred to as a simple radial distribution directed
towards the point of application of the force at O, At the surface § = +7/2,

so that normal stress 0y = O except at the origin itself, and the shear stress

Trg = 0. At a large distance from the point of application of the force (r - =)
the stresses approach zero, so that all the boundary conditions are satisfied.

We note that the stresses decrease in intensity as 1/r. The theoretically infinite
stress at O is obviously a consequence of assuming that the load is concentrated
along a line. The constant 4 is found by equating the vertical components of
stress acting on a semi-circle of radius r to the applied force P. Thus

w[2 mf2 )
—P=f arcos()rd():". 44 cos*0df = An
—n[2 1}

Fig. 2.2
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Hence

2P cos @
0,=—— — (2.15)
Tor

We note that ¢, has a constant magnitude —2P/nd on a circle of diameter d which
passes through O. Since 7,4 = 0, 0, and o4 are principal stresses. The principal
shear stress 7; at (r, ) has the value (g,/2) and acts on planes at 45° to the radial
direction. Hence contours of 7; are also a family of circles passing through O.
This pattern is clearly demonstrated by the isochromatic rringes in a photo-
elastic experiment, as shown in Fig. 4.6(a).

Changing the radial stress distribution of (2.15) into rectangular coordinates
we obtain the equivalent stress components

" 2P x%z
gy = 0, sin Gz_;(x_’—;zT)z (2.16a)
5 2P z3
0; = 0, COS 92_;‘m (216b)
_ 2P xz?
Tyx = 0, 5in 6 cos 6 =~——T; (—x2+—22)2 (2.16¢)

To find the distortion of the solid under the action of the load, we substitute the
stresses given by (2.14) and (2.15) into Hooke’s law (2.5); this yields the strains,
from which we may find the displacements by using equations (2.12) with the
result

ou, (1—»?) 2P cos @

— =g,=— — (2.17q)
or E T or

u 190u v(1+v) 2P cos @

r r o6 E T or

1 aur aug Upg Tre

Z 2T = =—=0 2.17
r 00 or r ¥ro G ( )

From these three equations, in the manner demonstrated for plane stress by
Timoshenko & Goodier (1951), p. 90, we obtain

1 —»? 1—20)(1+v
ur=—( )2Pcos01nr—(————L—)PBSinB
nE nE
+ Cysind + C; cosé (2.184q)
and
(l—vz) ] v(l+v)
Uug = 2Psinf Inr+ 2P sin 6

nE wE
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1-2v)(1+v 1-20)(1+v) .
—(—————)( )PB cos6+(———————-—)( )Psine
nE nE
+ Cycosd —C,sinf + Cyr (2.18b)
If the solid does not tilt, so that points on the z-axis displace only along Oz,
then C, = C5 = 0. At the surface, where 8 = £1/2,

(=) +w)P

[ar]G =g = [l_‘rle =_15r = °E (2.190)

_ i} (1—v%)

[u6]6_£=— [uo]e_ v 2PInr+C (2.19b)
5 =—- T

where the constant C is determined by choosing a point on the surface at
a distance r,, say (or alternatively on the z-axis below the surface), as a datum
for normal displacements. Then
_ N (1—»%)
[u6] 1r=_[u9] T = 2Pln(rO/r)
6= 6=—- nE

2

The deformed shape of the surface is shown in Fig. 2.2. The infinite displacement
at O is to be expected in view of the singularity in stress at that point. Choice of
an appropriate value of r, presents some difficulty in view of the logarithmic
variation of iz with . This is an inevitable feature of two-dimensional deforma-

tion of an elastic half-space. To surmount the difficulty it is necessary to consider
the actual shape and size of the body and its means of support. This question is

discussed further in §5.6.

23 Concentrated tangential force

A concentrated force Q per unit length of the y-axis, which acts
tangentially to the surface at O as shown in Fig. 2.3, produces a radial stress
field similar to that due to a normal force but rotated through 90°. If we
measure @ from the line of action of the force, in this case the Ox direction, the
expressions for the stresses are the same as for a normal force, viz.:

T r (2.20)
Op =Ty =0
Contours of constant stress are now semi-circular through O, as shown in Fig,

2.3. Ahead of the force, in the quadrant of positive x, g, is compressive, whilst
behind the force o, is tensile, as we might expect. The expressions for the stress
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Fig. 2.3

1G]

~

in x-z coordinates may be obtained as before:

0 » (2.212)
Oy =—— ————— 2la
x m (x?+z2)?
20 xz?
g,=—— ———— 2.21b
g m (x%+2%)? ( )
2 x%z
Tz =— —Q (2.21¢)

T (x?+22)?
With the appropriate change in the definition of 8, equations (2.18) for the
displacement still apply. If there is no rigid body rotation of the solid, nor

vertical displacement of points on the z-axis, the surface displacements turn out
to be:

i} _ (1—2%)
_[ur]G == [ur]e =0~ > 20Inr+C (2-22‘1)

(I1—=20)(1+»)

[tolo=r = ltts]lo =0 = BT 0 (2.22p)

which compare with (2.19) due to normal force. Equation (2.22b) shows that
the whole surface ahead of the force (x > 0) is depressed by an amount propor-
tional to Q whilst the surface behind Q (x < 0) rises by an equal amount. Once
again the tangential displacement of the surface varies logarithmically with the
distance from O and the datum chosen for this displacement determines the
value of the constant C,

2.4 Distributed normal and tangential tractions
In general, a contact surface transmits tangential tractions due to
friction in addition to normal pressure. An elastic half-space loaded over the
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strip (—b <x < a) by a normal pressure p(x) and tangential traction g(x) distri-
buted in any arbitrary manner is shown in Fig. 2.4. We wish to find the stress
components due to p(x) and g(x) at any point 4 in the body of the solid and
the displacement of any point C on the surface of the solid.

The tractions acting on the surface at B, distance s from O, on an elemental
area of width ds can be regarded as concentrated forces of magnitude p ds
acting normal to the surface and g ds tangential to the surface. The stresses at
A due to these forces are given by equations (2.16) and (2.21) in which x is
replaced by (x — s). Integrating over the loaded region gives the stress compo-
nents at 4 due to the complete distribution of p(x) and g(x). Thus:

_ 27 pea—sfds 210 gk —s)ds
Ox = ;j_bm ”f——b m (2.230)
__ 2 p@ds 2P e g()x—9)ds
R o S T S (2.23b)
__E [ OG- 2zfe g6 —9°ds
R § e ] W e

If the distributions of p(x) and g(x) are known then the stresses can be
evaluated although the integration in closed form may be difficult.

The elastic displacements on the surface are deduced in the same way by
summation of the displacements due to concentrated forces given in equations
(2.19) and (2.22). Denoting the tangential and normal displacement of point
C due to the combined action of p(x) and ¢(x) by &, and iz, respectively,

Fig. 2.4
b a
ds
p(s) —~ }_'_
——— —qEL r————— [N i |
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we find

iy =—(1_———2-';—2(1+"){ij OLE 0 o

_2A1—v?) fa .
> f_b a(s)In |x — sl ds + €, (2.24a)
. __2(1—1)2) a _
o ILCLUST
1— ) (1 +v)( a
N (”_)(_L){ f N 4(s) ds _f ) a(s) ds} + G (2.24b)

The step changes in displacement at the origin which occur in equations (2.19a)
and (2.22b) lead to the necessity of splitting the range of integration in the
terms in curly brackets in equations (2.24). These equations take on a much
neater form, and also a form which is more useful for calculation if we choose
to specify the displacement gradients at the surface dii,, /dx and 9ii,/dx rather
than the absolute values of u,, and #1,. The artifice also removes the ambiguity
about a datum for displacements inherent in the constants C; and C,. The terms
in curly brackets can be differentiated with respect to the limit x, and the

other integrals can be differentiated within the integral signs to give

il A—=2v)(1+v) 2(1—v?) fa q(s)
- = (x) —_

ds 2.25a
ox E P 7k —_pX—S ( )
du 2(1—v?) ra p(s 1—22)(1+v
N A I Gt 1 )q(x) (2.25b)
0x 7E —pX—S E

The gradient du,,/dx will be recognised as the tangential component of strain
€y at the surface and the gradient diz,/dx is the actual slope of the deformed
surface,

An important result follows directly from (2.25). Due to the normal pressure
p(x) alone (g(x) = 0)

_ Qily (1=2v)(1+v) )
Ex="—"="—"-"—"""p(x
o E P
But from Hooke’s law in plane strain (the first of (2.5)), at the boundary

Ex =é {1 —v®o, —v(1 +v)5,}

Equating the two expressions for €, and remembering that 5, = —p(x) gives

G, =0,=—px) (2.26)
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Thus under any distribution of surface pressure the tangential and normal
direct stresses at the surface are compressive and equal. This state of affairs
restricts the tendency of the surface layer to yield plastically under a normal
contact pressure,

2.5 Uniform distributions of traction

(a) Normal pressure

The simplest example of a distributed traction arises when the pressure
is uniform over the strip (—a <x <) and the shear traction is absent. In
equations (2.23) the constant pressure p can be taken outside the integral sign
and g(s) is everywhere zero. Performing the integrations and using the notation
of Fig. 2.5, we find

Oy = —2£ {2(6,—0,) + (sin 26, — sin 260,)} (2.27a)
m
0, =— 25 {2(8,— 6,) — (sin 20, — sin 20,)} (2.27p)
m
p
Txz = 2— (cos 26, — cos 26,) (2.27¢)
m

where
tan 6y, =z/(x T a)

If the angle (6; — 6, ) is denoted by a, the principal stresses shown by Mohr’s
circle in Fig, 2.6 are given by:

01,2 = —g(a F sin @) (2.28)
m

Fig. 2.5

—P X
0, 6,0 0:\J8,

r
r

A(x, 2)

N
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at an angle (8, + 6,)/2 to the surface. The principal shear stress has the value

r="sina (2.29)
7
Expressed in this form it is apparent that contours of constant principal stress
and constant 7, are a family of circles passing through the points O; and O, as
shown in Fig. 2.7(z) and by the photoelastic fringes in Fig. 4.6(4). The principal
shear stress reaches a uniform maximum value p/r along the semi-circle o = /2.
The trajectories of principal stress are a family of confocal ellipses and hyper-
bolae with foci O, and O, as shown in Fig. 2.7(d). Finally we note that the
stress system we have just been discussing approaches that due to a concen-
trated normal force at O (§2.2) when r, and r, become large compared with a.
To find the displacements on the surface we use equation (2.25). For a point

lying inside the loaded region (—a < x <a)

Oty (1—=2v)(1+v)

ox E
Then, assuming that the origin does not displace laterally,
(I—=20)(1 +v)
— T ox

z (2.30a)

Uy =

Now

o, 2(1—V2)J‘a ds
0x nk —gX—38

Fig. 2.6. Mohr’s circle for stress due to loading of Fig. 2.5.
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0, = —%(a + sin @)
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This integral calls for comment: the integrand has a singularity at s = x and
changes sign. The integration must be carried out in two parts, from s = —a to
x — € and from s = x + € to g, where € can be made vanishingly small. The
result is then known as the Cauchy Principal Value of the integral, i.e.

J‘a ds J‘x—f ds a ds
—aXx—s J_4 x—s fx+€s—x
=[InGx—9)P *—Mn(E—x)x+c

=In(@+x)—In(@—x)

Fig. 2.7. Stresses due to loading of Fig. 2.5: (¢) Contours of principal
stresses 0, 0, and T1; (b) Trajectories of principal stress directions.

/]
0, 0,
(Tl)mnx }
= p/-’r
[+
Ty = constant
=$sin o
(@
/]
0, & 1 19, —— X
gy
a2
Yz
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Fig. 2.8

VL

Hence

auj :_Mp{ln(a'%-x)—ln(d“)@}
nk

ox
(1—2v%) a+x\? a—x\?
U, =— p{(a+x)1n — +(a—x)1n( ) +C
nE a a
(2.300)
For a point outside the loaded region (|x|>a)
1—=)(1+v
+ (__-]:%(—_—) pa, x<-—a
i, = (2.30¢)
(I1—=2)(1+v)
- pa, x>a
E
In this case the integrand in (2.255) is continuous so that we find
1—p? x+a\
z———(————)p{(x+a)ln( )
nE
x—a\?
—(x—a)ln( ) e (2.30d)
a

which is identical with equation (2.30b). The constant C in equations (2.30b
and d) is the same and is fixed by the datum chosen for normal displacements.

In Fig. 2.8 the normal displacement is illustrated on the assumption thati, = 0
when x = ¢,

(b) Tangential traction
The stresses and surface displacements due to a uniform distribution
of tangential traction acting on the strip (—a < x < ) can be found in the same
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way. From equations (2.23) putting p(x) = 0, we obtain

Oy = 21 {41n(ry/ry) — (cos 20, — cos 260,)} (2.310)
m
q
0, = —(cos 20, — cos 20,) (2.31b)
2n
fog = — 21 {2(0,~ 8,) + (sin 28, — sin 26,)} (2.31¢)
m

where r; 5 = {(x Fa)® + 22 }'2.

Examination of the equations (2.24) for general surface displacements
reveals that the surface displacements in the present problem may be obtained
directly from those given in equations (2.30) due to uniform normal pressure.
Using suffixes p and g to denote displacements due to similar distributions of

normal and tangential tractions respectively, we see that

(#1y)q = (t;)p (2.324)
and

(#2)q = —(Ux)p (2.32b)

provided that the same point is taken as a datum in each case.

The stress distributions in an elastic half-space due to uniformly distributed
normal and tangential tractions p and g, given in equations (2.27) and (2.31),
have been found by summing the stress components due to concentrated normal
or tangential forces (equations (2.16) and (2.21)). An alternative approach is by
superposition of appropriate Airy stress functions and subsequent derivation of
the stresses by equations (2.6) or (2.11). This method has been applied to the
problem of uniform loading of a half-space by Timoshenko & Goodier (1951).
Although calculating the stresses by this method is simpler, there is no direct
way of arriving at the appropriate stress functions other than by experience
and intuitjon.

It is instructive at this juncture to examine the influence of the discontinuities
in p and g at the edges of a uniformly loaded region upon the stresses and displace-
ments at those points, Taking the case of a normal load first, we see from
equations (2.27) that the stresses are everywhere finite, but at O, and O, there
is a jump in o, from zero outside the region to —p inside it, There is also a jump
in 7, from zero at the surface to p/m just beneath. The surface displacements
given by (2.30b) are also finite everywhere (taking a finite value for C) but the
slope of the surface becomes theoretically infinite at O, and O, . The discon-
tinuity in g at the edge of a region which is loaded tangentially has a strikingly
different effect. In equation (2.312) the logarithmic term leads to an infinite
value of o, , compressive at O, and tensile at O, , as shown in Fig. 2.9. The
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Fig. 2.9
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normal displacements of the surface given by equations (2.32) together with
{2.30z and ¢) are continuous but there is a discontinuity in slope at O; and O,.
The concentrations of stress implied by the singularities at O; and O, undoubtedly
play a part in the fatigue failure of surfaces subjected to oscillating friction

forces - the phenomenon known as fretting fatigue.

26 Triangular distributions of traction

Another simple example of distributed loading will be considered. The
tractions, normal and tangential, increase uniformly from zero at the surface
points Oy and 0,, situated at x = *a, to maximum values p, and g4 at O (x = 0),

Fig. 2.10
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as shown in Fig, 2,10, i.e.

p(x) =5ai’ @—Ixl), IxI<a (2.33)

and 7
Q(X)=;°(a—|x|), x| <a (2.34)

These triangular distributions of traction provide the basis for the numerical
procedure for two-dimensional contact stress analysis described in §5.9.

When these expressions are substituted into equations (2.23) the integrations
are straightforward so that the stresses at any point A(x, z) in the solid may be
found. Due to the normal pressure:

0r =22 {(xr —a)By + (x + 0)8y — 226 + 22 In (ryra/r?)} (2.35a)
na
Oz =£(3 {(x —a)01 + (x + a)0'2 — 2x0} (235b)
na
Poz
Tyg=——— (0, + 0, — 26) (2.35¢)
na

and due to the tangential traction:

Oy = q_o {2x1In (’1’2/’2) + 2aIn (r/ry) — 32(0, + 6, — 26)} (2.360)
a

qoz
g, =———(0,+6,—26) (2.36))
na

= (=)0 + (r+ )y — 20 + 2 In (e P?)) (2.360)
a

wherer? =(x —a)? +z2%,r2 =(x +a)* +2%,r* =x*+ 2% and tan 6, =
2/(x —a), tan 6, = z/(x + a), tan 6 = z/x.
The surface displacements are found from equations (2.25). Due to the
normal pressure p(x) acting alone, at a point within the loaded region:
il A=2)(1+v)po

e =—T—a (a—lxl) (237a)

(I=2)(1 +v) po
ux=————~—-E~——— - X

relative to a datum at the origin. At a point outside the loaded region:
(1= 2)(1+9) poa
=73 £o7

Uy =F ———— 5 forx=0

E

ie.

(@—1iix), IxI<a (2.37b)
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The normal displacement throughout the surface is given by

diz, :_(I“Vz)p_:{(xw)ln(x”) +(x—“)1n(x;a)2}
=) b ey )

ox nE
. {(x + a)? ln(x—:) + (¢ —a)? ln(

2

ie.

u, =

—2x%1n (x/a)z} +C (2.37¢)

The surface displacements due to a triangular distribution of shear stress are
similar and follow from the analogy expressed in equations (2.32).

Examining the stress distributions in equations (2.35) and (2.36) we see that
the stress components are all finite and continuous. Equations (2.37) show that
the slope of the deformed surface is also finite everywhere. This state of affairs
contrasts with that discussed in the last section where there was a discontinuity
in traction at the edge of the loaded region.

2.7 Displacements specified in the loaded region

So far we have discussed the stresses and deformations of an elastic
half-space to which specified distributions of surface tractions are applied in the
loaded region. Since the surface tractions are zero outside the loaded region, the
boundary conditions in these cases amount to specifying the distribution of
traction over the complete boundary of the half-space. In most contact problems,
however, it is the displacements, or a combination of displacements and surface
tractions, which are specified within the contact region, whilst outside the
contact the surface tractions are specifically zero. It is to these ‘mixed boundary-
value problems’ that we shall turn our attention in this section.

It will be useful to classify the different combinations of boundary conditions
with which we have to deal. In all cases the surface of the half-space is con-
sidered to be free from traction outside the loaded region and, within the solid,
the stresses should decrease as (1/r) at a large distance r from the centre of the

loaded region. There are four classes of boundary conditions within the contact
region:

Class I: Both tractions, p(x) and g(x), specified. These are the conditions
we have discussed in the previous sections. The stresses and surface displace-
ments may be calculated by equations (2.23) and (2.24) respectively.

Class II: Normal displacements 2, (x) and tangential traction g(x) specified
or tangential displacements #, (x) and normal pressure p(x) specified.
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The first alternative in this class arises most commonly in the contact of
frictionless surfaces, where g(x) is zero everywhere, and the displacements
i1,(x) are specified by the profile of the two contacting surfaces before defor-
mation. The second alternative arises where the frictional traction g(x) is
sought between surfaces which do not slip over all or part of the contact inter-
face, and where the normal traction p(x) is known.

Class IIT: Normal and tangential displacements i,(x) and i, (x) specified.
These boundary conditions arise when surfaces of known profile make contact
without interfacial slip. The distributions of both normal and tangential traction
are sought.

Class IV: The normal displacement i, (x) is specified, while the tractions are
related by g(x) = up(x), where u is a constant coefficient of friction. This
class of boundary conditions clearly arises with solids in sliding contact; &, (x)
is specified by their known profiles,

It should be noted that the boundary conditions on different sectors of the
loaded region may fall into different classes. For example, two bodies in contact
may slip over some portions of the interface, to which the boundary conditions
of class IV apply, while not slipping over the remaining portion of the interface
where the boundary conditions are of class III.

To formulate two-dimensional problems of an elastic half-space in which
displacements are specified over the interval (—b <x < a) we use equations
(2.25). Using a prime to denote 9/dx, we may write these equations:

@ q6) a(l=22) - @E
j__bx_—_s ds=— 21— oy PX) =75 i1}, (x) (2.384)
e p(s) 7T(1—2V) _nE y

With known displacements, (2.38) are coupled integral equations for the unknown
tractions p(x) and g(x). Within the limits of integration there is a point of singu-
larity when s = x, which has led to their being known as ‘singular integral
equations’, Their application to the theory of elasticity has been advanced
notably by Muskhelishvili (1946, 1949) and the Soviet school: Mikhlin (1948)
and Galin (1953). The development of this branch of the subject is beyond the
scope of this book and only the immediately relevant results will be quoted.

When the boundary conditions are in the form of class II, e.g. &1, (x) and g(x)
prescribed, then equations (2.382) and (2.385) become uncoupled. Each equation
takes the form

fa s) ds = g(x) (2.39)
b

—p XS
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where g(x) is a known function, made up from a combination of the known
component of traction and the known component of displacement gradient,
and F(x) is the unknown component of traction. This is a singular integral
equation of the first kind; it provides the basis for the solution of most of the
two-dimensional elastic contact problems discussed in this book. It has a general
solution of the form (see Sohngen, 1954; or Mikhlin, 1948)

B 1 a {(s+ b)(a—s)}"%g(s) ds
n?{(x + b)(@ —x)}'"? f
C
+
72 {(x + b)(a — x)}"*
If the origin is taken at the centre of the loaded region the solution simplifies to
a (a% —s?)2%g(s) ds
Fx) = —— 21/2f 20,2 _ L2 172
wé(a* —x*) g x—s wé(a® —x*)

The constant C is determined by the total load, normal or tangential, from the
relationship

F(x)

—b X —S

(2.40)

(2.41)

C=n f " P dx (2.42)

The integrals in equations (2.40) and (2.41) have a singularity at s = x. The
principal value of these integrals is required, as defined by:

PV. f * 1) ds ELimit[ f s f * 1 ds] (2.43)

—p X8 €—>0 —p XS x+e X8

The principal values of a number of integrals which arise in contact problems are
listed in Appendix 1.
The integral equation in which g(x) is of polynomial form:
glx) =Ax" (2.44)
is of technical importance. An obvious example arises when a rigid frictionless
punch or stamp is pressed into contact with an elastic half-space as shown in
Fig. 2.11. If the profile of the stamp is of polynomial form
z = Bx" +1
the normal displacements of the surface are given by
Uy (x) = u5(0) — Bx"+1
thus

iy(x)=—(Mn+ 1)Bx"
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If the punch is frictionless g(x) = 0, so that substituting in equation (2.38b)
gives

a  p(s) nE

ds = — (n+ 1)Bx" (2.45)
_pX—S 2(1 —v*)

This is an integral equation of the type (2.39) for the pressure p(x), where

g(x) is of the form Ax". If the contact region is symmetrical about the origin

b = a, equation (2.45) has a solution of the form expressed in (2.41). The

principal value of the following integral is required:

+1 Sn(l _S2)1/2 ds
InEP.V.f
—1 X—S

(2.46)

where X = x/a, S = s/a. From the table in Appendix 1

+1 (1 _S2)1/2
10=P.V.f — dS = nx

A series for I,y may be developed by writing
+1 Sn—l 1_S2 1/2 ds +1
1,,=Xf ( ) —f S" (1 -8 dS
—1 X—S —1
=Xl 1= I
=X"I,— X" VY= X" — =X,y —J,

Fig. 2.11
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where
+1
I =J. Sm(l _S2)1/2 ds
—1
/2 form=0
1-3:5...m—1)
= 7 form even
2-4...m(m+2)
0 for m odd
Hence
W{Xn-’—l—‘%Xn_l—an_:';___.__l -3-5 (}’l—3) X}
’ 2-4...n
/ for n even (2.47a)
n:
7T{Xn+l—an_1—lX"—3_, o 1-3.. .(n—2)}
’ ° 2-4...(n+1)
fOl'n odd (247b)
If P is the total load on the punch, then by equation (2.42)
C=qxP

The pressure distribution under the face of the punch is then given by equation
(2.41), ie.
E(mn+ DB, N P ) 48

p(x) 2(1'—'1)2)77 (az_x2)1/2 77(12 _x2)1/2 ( - )
In this example it is assumed that the load on the punch is sufficient to maintain
contact through a positive value of pressure over the whole face of the punch.
If n is odd the profile of the punch and the pressure distribution given by
equation (2.48) are symmetrical about the centre-line. On the other hand, if
n is even, the punch profile is anti-symmetrical and the line of action of the
compressive load will be eccentric giving rise to a moment

M =f ’ xp(x) dx (2.49)

Finally it is apparent from the expression for the pressure given in (2.48) that,
in general, the pressure at the edges of the punch rises to a theoretically infinite
value.

We turn now to boundary conditions in classes III and IV. When both com-
ponents of boundary displacement are specified (class III) the integral equations
(2.38) can be combined by expressing the required surface tractions as a single
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complex function:

F(x) = p(x) + ig(x) (2.50)
Then by adding (2.382) and (2.38b), we get
FOO) — i 2(1—v) e F(s)ds __ E
7(1—2w)J_p x—s (1-2»)(1+v)
x {ity (x) — ia3 (0} (2.51)

In the case of sliding motion, where #,(x) is given together with
q(x) = up(x) (boundary conditions of class IV), equation (2.38b) becomes

a E
x) — ds = i1, (x 2.52)
P (1l —20)J) _px—s w1 —20)(1 + ) #:(x) (
To simplify equations (2.51) and (2.52) we shift the origin to the mid-point of
the contact region (i.e. put b = a), and put X = x/a, S = s/a. Equations (2.51)
and (2.52) are both integral equations of the second kind having the form

F +1 F(S)dS ps s
0+ f_l e = 6) 253)

where G(X), F(X) and X can be real or complex. The function G(X) is known
and it is required to find the function F(X). X is a parameter whose value depends
upon the particular problem. The solution to (2.53) is given by Séhngen (1954)
in the form

F(X) = Fi(X) + Fo(X) (2.54)
where Fy(X) is the solution of the homogeneous equation, i.e. equation (2.53)
with the right-hand side put equal to zero. He gives

Fox A 1 (1+X)7
1(X) = 1+>\2 G 1+ r(1—XH"? \1—X
Y G(S
f (1_52)1/2(1+s) X(;ds (2.55)

where v is a complex constant related to X by cot (7y) = A, i.e.
™Y = (i — 1)/(i\ + 1), restricted so that its real part Re(y) lies within the
interval —3 to +3%, and

FoX) = — —— 1 (1+X)7C 2.56)
=G s —xye \1—x @

where the constant

+1 1
c=f F(X)dx =—(P+iQ)
—1 a
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If X is imaginary, so that A = ik, then A; must lie outside the interval —1 to +1.
This condition is met in the problems considered here.

We will take first the case of both boundary displacements specified (class
IIT), where we require the solution of equation (2.51). Comparing the general
solution given in (2.55) and (2.56) with equation (2.51) we see that \ is
imaginary (A = iX,) where

A 2w (2.57)
S '
Since v lies between 0 and 4, \; < —2 which makes the solution given by (2.56)
valid. Thus vy is also imaginary, so that, putting y = in, we have

e_27"7:—)\1_ 1 : 1
-+l 3—4
giving
1
n=—1n(3~—4v) 2.58)
27

Substituting for A and 7y from equations (2.57) and (2.58) in (2.56) the required
solution is

p(X) +iq(X) = F(X) = Fiy(X) + Fo(X)

where .
Fy = G E 00 — i@ O} + | 2(1 ~v)E
= G 4y ) i )
1 14+ X\i" ¢ +1 i 1__—§in
Xﬂ(l—X’)“’(l—X) J_l (1=5% (1+S)
5, (S)— ia(S)
= (25%)
and
21— P+iQ 1+ X\In
Fo(X)—(3_4V)1/2 ‘na(l—Xz)l/z(l—*X) (2.59b)

To obtain expressions for the surface tractions p(X) and g(X) requires the
evaluation of the integral in (2.592). So far only a few problems, in which the
distributions of displacement i, (X) and i,(X) are particularly simple, have
been solved in closed form. For an incompressible material (v = 0.5) the basic
integral equations (2.38) become uncoupled. In this case we see from (2.58)
that n = 0, whereupon the general solution to the coupled equations given by
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equation (2.59), when real and imaginary parts are separated, reduces to the
solution of two uncoupled equations of the form of (2.41).

When the boundary conditions are of class IV, by comparing equations
(2.52) with the general form (2.53), we see that A is real: i.e.

2(1 —v)
A=—————=cotmy (2.60)
u(l—2v)
Substituting for A in the general solution (2.55) and (2.56) gives
E sinmy cosmy _, E cos® 1y 1 1+ X\”
pOr) = =TT g oy 4 =T o ()
2(1 — v?) 21—y n(1—X2)"2 \1—X

+1 1 =8\ u,(S Pcosm
xJ' (1——S2)”2( ) “S) s 4 ?
_1 1+8) X—8  ma(1—X%)"

X (%)7 (2.61)

and

q(X) = pp(X).

Once again, for an incompressible material, or when the coefficient of friction
approaches zero, y approaches zero and the integral equations become uncoupled.
Equation (2.61) then degenerates into the uncoupled solution (2.41).

Having found the surface tractions p(X') and q(X') to satisfy the displacement
boundary conditions, we may find the internal stresses in the solid, in principle
at least, by the expressions for stress given in equations (2.23).

An example in the application of the results presented in this section is
provided by the indentation of an elastic half-space by a rigid two-dimensional
punch which has a flat base. This example will be discussed in the next section.

2.8 Indentation by a rigid flat punch

In this section we consider the stresses produced in an elastic half-
space by the action of a rigid punch pressed into the surface as shown in Fig. 2.12.
The punch has a flat base of width 2z and has sharp square corners; it is long in
the y-direction so that plane-strain conditions can be assumed. Since the punch
is rigid the surface of the elastic solid must remain flat where it is in contact with
the punch. We shall restrict our discussion to indentations in which the punch
does not tilt, so that the interface, as well as being flat, remains parallel to the
undeformed surface of the solid. Thus our first boundary condition within the
contact region is one of specified normal displacement:

#,(x)= constant = §, (2.62)
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The second boundary condition in the loaded region depends upon the frictional
conditions at the interface. We shall consider four cases:

(a) that the surface of the punch is frictionless, so that g(x) = O;

(b) that friction at the interface is sufficient to prevent any slip between
the punch and the surface of the solid so that i1, (x) = constant = §,;

(¢) that partial slip occurs to limit the tangential traction |g(x)| < up(x);
and

(d) that the punch is sliding along the surface of the half-space from right
to left, so that g(x) = up(x) at all points on the interface, where u is
a constant coefficient of sliding friction,

No real punch, of course, can be perfectly rigid, although this condition will
be approached closely when a solid of low elastic modulus such as a polymer or
rubber is indented by a metal punch. Difficulties arise in allowing for the elasti-
city of the punch, since the deformation of a square-cornered punch cannot be
calculated by the methods appropriate to a half-space. However the results of
this section are of importance in circumstances other than that of a punch
indentation. We shall use the stresses arising from constant displacements §,, and
8 in the solution of other problems (see §§5.5 & 7.2). .

(a) Frictionless punch
The boundary conditions:

i1,(x) = constant, q(x)=0 (2.63)

are of class IT as defined in the last section so that the pressure distribution is

given by the integral equation (2.38b) which has the general solution (2.41) in
which

O=— " Bw®=0

g(s)=— u,(x)=

200—v*) ¢

Fig. 2.12
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In this case the result reduces to the homogeneous solution while C = #nP:
P

ﬂ_(a2 . x'Z )1/2

This pressure distribution is plotted in Fig. 2.13(2) (curve A). The pressure

reaches a theoretically infinite value at the edges of the punch (x = %z). The

stresses within the solid in the vicinity of the corners of the punch have been
found by Nadai (1963). The sum of the principal stresses is given by

p(x) = (2.64)

o,+ 0, %—Wsm 6/2) (2.652)
and the principal shear stress
P .

TI%—QTT(T")M sin 0 (2.65b)

Fig. 2.13. (@) Tractions on the face of flat punch shown in Fig. 2.12:
curve A - Frictionless, eq. (2.64) for p(x); curve B - No slip, exact

eq. (2.69) for p(x); curve C - No slip, exact eq. (2.69) for g(x); curve D -
No slip, approx. eq. (2.72) for g(x); curve E - Partial slip, p(x); curve F -
Partial slip, g(x) (curves E & F from Spence, 1973). (b) Ratio of
tangential traction g(x) to normal traction p(x): curve G - No slip,
approx. eqs (2.72) and (2.64); curve H - Partial slip, from Spence

(1973) (v = 0.3, u = 0.237 giving ¢ = 0.5).
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where r and @ are polar coordinates from an origin at x = 2 and r < a (see the
photoelastic fringe pattern in Fig. 4.6(c)). At the surface of the solid ¢, = ¢, =
o, = o,. From (2.65b) the principal shear stress is seen to reach a theoretically
infinite value as » > 0 so that we would expect a real material to yield plastically
close to the corners of the punch even at the lightest load. The displacement
of the surface outside the punch can be calculated from (2.24%) with the result
21 —v)P  (x (x? 172
e L
nE la \a&?
where, as usual, §, can only be determined relative to an arbitrarily chosen
datum. We note that the surface gradient i, is infinite at x = *a. From (2.244)
we find the tangential displacements under the punch to be
7,y = — LD ) (2.67)
nE
For a compressible material (v < 0.5), this expression shows that points on the
surface move towards the centre of the punch. In practice this motion would be
opposed by friction, and, if the coefficient of friction were sufficiently high, it
might be prevented altogether. We shall now examine this possibility.

Uy(x)=6,— (2.66)

(b) No slip

If the surface of the solid adheres completely to the punch during
indentation then the boundary conditions are

Uy(x)=68, and i,(x)=38, (2.68)
where 8, and §, are the (constant) displacements of the punch. These boundary
conditions, in which both displacements are specified, are of class III. The
integral equations (2.38) for the tractions at the surface of the punch are now
coupled and their general solution is given by equation (2.59). Since the dis-
placements are constant, ii,.(x) = iz;(x) = 0, so that only the solution to the
homogeneous equation (2.595) remains, viz.:

2(1—v) P+iQ (a+x)i"
(3 — 411)1/2 b az _x2)1/2
2(1 —v) P+iQ

- 3- 4v)”2 71(112 _x2)1/2

e s I

where n = (1/27) In (3 — 4).
The tractions p(x) and q(x) under the action of a purely normal load (Q = 0)
have been computed for v = 0.3 and are plotted in Fig. 2.13(a) (curves B and C).

pOx) +ig(x) = —
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The nature of the singularities at x = %4 is startling. From the expression
(2.69) it appears that the tractions fluctuate in sign an infinite number of times
as x — a! However the maximum value of n is (In 3)/2% which results in the
pressure first becoming negative when x = %4 tanh (7%/2 In 3) i.e. when
x = £0.9997a, which is very close to the edge of the punch. We conclude that
this anomalous result arises from the inadequacy of the linear theory of
elasticity to handle the high strain gradients in the region of the singularity.
Away from those points, we might expect equation (2.69) to provide an
accurate measure of the stresses.

If a tangential force Q acts on the punch in addition to a normal force, addi-
tional shear and normal tractions arise at the interface. With complete adhesion,
these are also given by equation (2.69) such that, due to unit loads

[a()]o = [P()]p
and (2.70)

[p()]o = —[9(x)]»

Since [g(x)]p is an odd function of x, the influence of the tangential force is to
reduce the pressure on the face of the punch where x is positive and to increase
it where x is negative. A moment is then required to keep the punch face square.
Close to x = +a the pressure would tend to become negative unless the punch
were permitted to tilt to maintain contact over the whole face. Problems of

a tilted punch have been solved by Muskhelishvili (1949) and are discussed by
Gladwell (1980).

At this juncture it is instructive to compare the pressure distribution in the
presence of friction computed from equation (2.69) with that in the absence of
friction from equation (2.64) (see Fig. 2.13(2)). The difference is not large,
showing that the influence of the tangential traction on the normal pressure
is small for-v = 0.3, Larger values of v will make the difference even smaller.
Therefore, in more difficult problems than the present one, the integral equations
can be uncoupled by assuming that the pressure distribution in the presence of
friction is the same as that without friction. Thus we put g(x) = 0 in equation
(2.38b) and solve it to find p(x) without friction. This solution for p(x) is then
substituted in equation (2.38a) to find an approximate solution for g(x). Each
integral equation is then of the first kind having a solution of the form (2.41).

If this expedient is used in the present example, the pressure given by (2.64)
is substituted in equation (2.382) to give

j“ q_(s_)_dsz_(l—2v) P

aX— S 2(1—V) (112 _x2)1/2

(2.71)



Line loading of an elastic half-space 40

Using the general solution to this equation given by (2.41), we get

L 1—2) p a ds 0
q(x)= 22(1 =) (a _xz)l/zf_a x—s m(@? —x2)i/2
__ (1—2) p n(a+x) 0 2.72)
W (1—v) (@ —x))"2 \a—x) n(@®—x*)"?

This approximate distribution of tangential traction is also plotted in Fig.
2.13(a) for Q = 0 (curve D). It is almost indistinguishable from the exact
solution given by (2.69).

(c) Partial slip

In case (b) above it was assumed that friction was capable of preventing
slip entirely between the punch and the half-space. The physical possibility of
this state of affairs under the action of a purely normal load P can be examined
by considering the ratio of tangential to normal traction q(x)/p(x). This ratio
is plotted in Fig. 2.13() (curve G) using the approximate expressions for
q(x) and p(x), i.e. equations (2.72) and (2.64) respectively, from which it is
apparent that theoretically infinite values are approached at the edges of the
contact. (The same conclusion would be reached if the exact expressions for
q(x) and p(x) were used.) This means that, in practice, some slip must take
place at the edges on the contact.

The problem of partial slip was studied first by Galin (1945) and more com-
pletely by Spence (1973). Under a purely normal load the contact is symmetrical
about the centre-line so that the no-slip region will be centrally placed from
x = —c to x = +c, say. The boundary condition #,(x) = §, = constant still
applies for —a < x <a, but the condition i,.(x) = §,, = 0 is restricted to the
no-slip zone —¢ <x <c. In the slip zonesc < |x|<a

q(x) = tup(x)
The extent of the no-slip zone is governed by the values of Poisson’s ratio » and
the coefficient of friction u. The problem is considerably simplified if the
integral equations are uncoupled by neglecting the influence of tangential
traction on normal pressure. With this approximation Spence has shown that
¢ is given by the relationship

K'(c/a)/K(c/a) = (1 —2v)/2(1 —v)u (2.73)
where K(c/a) is the complete elliptic integral of the second kind and K'(c/a) =
K(1 —c?/a*)''?. The values of p(x) and g(x) and the ratio q(x)/p(x) with partial

slip have been calculated for » = 0.3, u = 0.237 and are plotted in curves E, F
and H in Fig. 2.13(z and b).



Indentation by a rigid flat punch 41

(d) Sliding punch

A punch which is sliding over the surface of a half-space at a speed
much less than the velocity of elastic waves, so that inertia forces can be
neglected, has the boundary conditions:

uy(x) = constant = §,, q(x) = up(x) (2.74)
These are boundary conditions in class IV, so that the coupled integral
equations for the surface tractions combine to give equation (2.52) having
as its general solution equation (2.61). In the case of the flat punch, ii,(x) = O,

so that once again we only require the solution to the homogeneous equation,
viz.:

© Pcosmy a+x>7 (275)
x)= .
p ﬂ,(a2_x2)1/2 (a_x
where
2(1—v)
cotry=———"""-
p(1l —2v)

This pressure distribution is plotted for v = 0.3 and u = 0.5 in Fig. 2.14,
where it is compared with the pressure distribution in the absence of friction.

Fig. 2.14. Pressure on the face or a sliding punch: curve A frictionless;
curve B with friction (v = 0.3, u = 0.5).
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The punch is moving from right to left so that the effect of friction is to reduce
the pressure in the front half of the punch and to increase it on the rear. In
this case also it is apparent that the influence of frictional traction upon the
normal pressure is relatively small.

2.9 Traction parallel to y-axis

A different form of two-dimensional deformation occurs when
tangential tractions, whose magnitude and distribution are independent of the
y-coordinate, act on the surface of the half-space in the y-direction. Clearly
x—z cross-sections of the solid will not remain plane but will be warped by the
action of the surface traction. Since all cross-sections will deform alike, however,
the stress field and resulting deformations will be independent of y.

We will consider first a concentrated tangential force of magnitude Q,, per
unit length acting on the surface along the y-axis, as shown in Fig. 2.15. This
force produces a simple shear-stress distribution which can be derived easily as
follows.

We think first of two half-spaces with their surfaces glued together to make
a complete infinite solid. A force 20, per unit length acts along the y-axis. In
cylindrical coordinates r, 8, y the stress system in the complete solid must be
axially symmetrical and independent of # and y. By considering the equilibrium
of a cylinder of radius r we find

2mr7,y, = —20,
ie.

Tpy =——= (2.76a)

Fig. 2.15
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The other stress components must vanish, i.e.

0,=03=0,=0 (2.76b)
The strains associated with these stresses are compatible and result in an
identical warping of each cross-section of the solid. Now no stresses act across
the interface where the two half-spaces are glued together, so that they can be
separated without changing the stress distribution. Thus equations (2.76)
describe the required stress distribution. In Cartesian coordinates

Qyx
Tyy = Tpy COS O = —— 2.77a
x) ry ﬂrz ( )
0,z
Tyy = Tpy SIN O = — —— 2.77b
yz ry m'z ( )

The deformations are found from the only strain component

ou,  Ou,
‘5; 5 =Yry = 7'ry/G"
Since the deformation is independent of y, du,/dy = 0, so
ou,, 0,
—= =T, /G =—— 2.78
or r! aGr ( )
At the surface z = 0, this becomes
ou
ity 9y (2.79)
0x 7Gx
or
u ——&1n1x|+C (2.80)
y G .

and, neglecting rigid body motions, i, = u, = 0. Comparing this result with
equations (2.19) and (2.22), we note that the displacement in the direction of
the force is similar in form to that produced by a concentrated normal force,

or by a tangential force in the x-direction. However in this case the displacement
perpendicular to the force is absent.

The stresses and displacements produced by a tangential traction, distributed
over the strip —a < x < g, are found as before by summing the effects of a con-
centrated load Q), = q,(s) ds acting on an elemental strip of width ds. As an
example we shall consider the tangential traction

3,(x) = go(1—x*/a*)'? (2.81)
acting on the strip —a < x <a. From equations (2.77)
do J'a @*—sH)"*(x —s) ds

e 9+ 2?

Txy - (2.82a)
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and

2 231/2
q,z ¢ (a* —s5*)'* ds
Ty = _d0% —— (2.82b)
ma J_, (x—s)+z
Evaluation of the integrals is straightforward. On the surface (z = 0) it is found
that

_ —~qoxfa, —a<x<a
Txy = T 2 172 } (2.83q)
—qol(x/a) # {(x/a)* — 1}'"*], Ix|>a

and on the axis of symmetry (x = 0)

Tye = —qo [{1 + (z/a)*}''* — z/a] (2.83b)
The surface displacements follow from equation (2.79)

a1y, J‘ (@ —s )” 2

—_— S

ox —a (x—3)

From the list of principal values of integrals of this type given in Appendix 1 it
follows that

auy _ 4o X
ox Ga
Thus
40x
u,=— +C 2.84
Y 2Ga (2.84)

The results obtained in this example are used later (§8.3) when studying the
contact stresses in rolling cylinders which transmit a tangential force parallel to
the axes of the cylinders.
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Point loading of an elastic half-space

3.1 Potential functions of Boussinesq and Cerruti

In this chapter we consider the stresses and deformations produced in
an elastic half-space, bounded by the plane surface z = 0, under the action of
normal and tangential tractions applied to a closed area S of the surface in the
neighbourhood of the origin. Outside the loaded area both normal and tangential
tractions are zero. Thus the problem in elasticity is one in which the tractions
are specified throughout the whole surface z = 0. In view of the restricted area
to which the loads are applied, it follows that all the components of stress fall to
zero at a long distance from the origin. The loading is two-dimensional: the
normal pressure p(x, y) and the tangential tractions g, (x, y) and q,,(x, y), in
general, vary in both x and y directions. The stress system is three-dimensional
therefore; in general all six components of stress, 0y, 0y, 0z, Txy, Tz, Tox, Will
appear.

A special case arises when the loading is axi-symmetric about the z-axis.

In cylindrical polar coordinates (7, 8, z) the pressure p(r) and the tangential
traction g(r) are independent of 8 and q(r), if it is present, acts in a radial
direction. The stress components 7,9 and 74, vanish and the other stress com-
ponents are independent of 9.

The classical approach to finding the stresses and displacements in an elastic
half-space due to surface tractions is due to Boussinesq (1885) and Cerruti
(1882) who made use of the theory of potential. This approach is presented by
Love (1952): only selected results will be quoted here.

The half-space is shown in Fig. 3.1. We take C(£, 1) to be a general surface
point within the loaded area S, whilst A(x, y, z) is a general point within the
body of the solid. The distance

CA=p={(t—x)*+(n—y)* + 22} (3.1
Distributions of traction p(&, n), (&, m) and g, (&, n) act on the area S. The
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following potential functions, each satisfying Laplace’s equation, are defined:

F1=fs qu(é,n)ﬂ dt dn
Gy = f ) f 4, (&, MR dt dn (3.2)

H = f j p(e, M) d dny
S
where

Q=zIn(p+z)—p (3.3)

In addition we define the potential functions

= ——j qu(é n)In(p +z)dEdn
ac;1
j j 4, m) In (p +2) dt dn (3.4

-=fsjp(s,n>1n(p+z>dsdn

We now write

oF, 098G, 0H,
PR AL il (3.5)
ox oy oz
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and

oy, _OF 3G oH

= =4 — 3.6
9z  ox ay az (3.6)

Love (1952) shows that the components of elastic displacement u,, u,, and
u, at any point 4(x,y, z) in the solid can be expressed in terms of the above
functions as follows:

1 oF 0oH VA oy
ux=—{ —_— vy — —z — (3.7q)
4G 0z Ox ox ox
1 oG aH 0 0
Uy, =—- { — = —Lp—l—z—w} (3.7b)
anG 0z ay ay oy
! {aH+(l 20\ aw} (3.7¢)
u —{ — — W —z — e
2" 4nG 5 3z

These expressions decrease as (1/p) at large distances from the loaded region.
They represent, therefore, the elastic displacements of points close to the
loaded region relative to the points in the solid at a large distance from the
loaded region (p = °°) where the half-space may be looked upon as fixed. This
behaviour in two-dimensional loading, where a datum for displacements can be
taken at infinity, compares favourably with one-dimensional loading, considered
in the previous chapter, where a variation of displacements as In p precludes
taking a datum at infinity and imposes an arbitrary choice of datum.

The displacements having been found, the stresses are calculated from the
corresponding strains by Hooke’s law:

G (du, Ou, Ou, ous,
0y = (—+——+——)+2G— (3.82)
1—2v\ ax oy oz 0x
220G (ou ou ou ou
o, = (——"+—y+—z)+2G—y (3.8b)
1—2v\ ox oy oz oy
2vG jou ou ou ou
0, = (——x + =24 —z) +26 = (3.8¢)
1—2v\ox ay 0z 0z
(au" + 2 ) (3.8d)
_ (auy 8uz) (3.8¢)
ay
_ (auz aux) (3.87)
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Under the action of a purely normal pressure p(§, 1), which would occur in
a frictionless contact, the above equations may be simplified. Here

whence
oH,
b="t=t={ [peninee+oaan (3.9)
aZ s
1
=J fp(z,n) — dfdn (3.10)
S P
o % @}
Iy = 47rG=(1 2v) x+zax (3.11a)
1 0
uy=—;{(l——2v)%+z%%} (3.11p)
N PR )
uz——47rG{2(1 V)Y Zaz} (3.11¢)

Remembering that ¢ and ¢/, are harmonic functions of x, y and z, i.e. they both
satisfy Laplace’s equation,

Viy =0, Vi;=0
the dilatation A is given by
aux+%,+a_u_z=1—2v %
ox oy 0z 2rG oz

Substitution of equations (3.11) and (3.12) into equations (3.8) gives expres-
sions for the components of stress at any point in the solid. These are:

(3.12)

0y = 2177 {2v%l—j—z ;7‘1’ —(1—2) zw‘} (3.132)
oy—%r{vzg—zg—(l—2) 24’2‘} (3.13b)
o= - {Z—f~z %f} (3.13¢)
Tay=—— !(1—2 ) a:g; axad;} (3.13d)
- Z_EIEZS% (3.13¢)
—— 1y o’y (3.131)

27r 0x0z
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We note that the stress components o, 7, and 7,, depend upon the function
y only. The stress components o, and ¢, depend upon the function ¥/, but
their sum does not, thus

+ : {(1+2)8\l/+ azw} 3.14
o, to,=— v)—+z — )
x ¥ o 0z 0z2 ( )
At the surface of the solid the normal stress
1 /90 —p(&, inside S
g,zz_(_‘l’) =-{ p(E,m) } (3.15)
2w\ 0z /,—¢ 0 outside S
and the surface displacements are
1—2v /0
Uy=— (&) (3.160)
4nG \ox /,=¢
1—2v /0
i, =— (—wl) (3.16b)
4G \ 9y /,—o
_ 1—u(a¢1) l_V(\IJ) 3.160)
u, = —— _ = — — .10cC
2w \oz ),y 220G T T° ¢

Equations (3.15) and (3.16¢) show that the normal pressure and normal displace-
ment within the loaded area depend only on the potential function .

The equations quoted above provide a formal solution to the problem of
stresses and deformations in an elastic half-space with prescribed tractions
acting on the surface. If the distributions of traction within the area S are
known explicitly then, in principle, the stresses and displacements at any point
in the solid can be found. In practice, obtaining expressions in closed form for
the stresses in any but the simplest problems presents difficulties. In particular
circumstances more sophisticated analytical techniques have been developed to
overcome some ot the difficulties of the classical approach. A change from
rectangular to ellipsoidal coordinates enables problems in which the loaded
area is bounded by an ellipse to be handled more conveniently (Lur’e, 1964;
Galin, 1953; de Pater, 1964). For circular contact areas, the use of a special
complex stress function suggested by Rostovtzev (1953) (see also Green & Zerna,
1954) enables the stresses to be found when the displacements are specified
within the loaded area.

For the case of axial symmetry Sneddon (1951) has put forward integral
transform methods which have been developed by Noble & Spence (1971)

(see Gladwell, 1980, for a full discussion of this approach).

An alternative approach, which is the one generally followed in this book,
is to start from the stresses and displacements produced by concentrated normal
and tangential forces. The stress distribution and deformation resulting from
any distributed loading can then be found by superposition, This approach has
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the merit that it lends itself to numerical analysis and makes possible the solu-
tion of problems in which the geometry makes analytical methods impossible.

3.2 Concentrated normal force

The stresses and displacements produced by a concentrated point
force P acting normally to the surface at the origin (Fig. 3.2) can be found”
directly in several ways. Using the results of the previous section, the area
S over which the normal traction acts is made to approach zero, thus

p= (x2 _|__y2 + 22)1/2

and

L j p(¢,n) d dn = P (3.17)

The Boussinesq potential functions ¥/, and y/, defined in equations (3.9) and
(3.10), in this case reduce to

oH,
Yyy=—=H=Pln(p+2z)
0z
v=2p
oz P
Substituting (3.11) for the elastic displacements at any point in the solid gives
P{xz (1—2w) — } (3.182)
U, = ——{—=—(1—w .18a
T 4G\ p? o(p +2)
P (yz
u, = ——{*3—(1—21») 4 } (3.185)
4nG \ p p(p +2)
Fig. 3.2
P
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U,

P (z2 2(1—v
_ _{_ X )}
4nG \ p3 p
where p is given by (3.17).
The stress components are then given by equations (3.13) with the results:

o P [(1—221)) !(1_5) x%—y? +gy_2} _3Z_x2] (3.19)

(3.18¢)

T oon , P 2 0 IE
P — 2 __ .2 2 2
oy=2—ﬂ[(l rzzu) {(1—%) Y rzx +% } —3Zp—y5] (3.190)
3Pz
0= s (3.1%)
P —
AR ] e
3P xz?
sz:_2_77 F (3.19¢)
3P yz?
e (3.191)

where r? = x? 4+ 2. The equations in this form are useful for finding, by direct
superposition, the stresses due to a distributed normal load.

Alternatively, we may recognise from the outset that the system is axi-
symmetric and use polar coordinates. Timoshenko & Goodier (1951) start by
introducing a suitable stress function for axi-symmetric problems and use it
to deduce the stresses produced by a concentrated normal force acting on the
surface of an elastic half-space with the results:

P 1 z 3zr?

0,.:2—’”{(1—“211)(;”“;2‘)—?} (3.2011)
P 1 z z

092—2—77(1—211)(;2‘—/;5 —p—s) (3.20b)
3P 73

0, =— ZT E (3.20¢)
3P rz?

Tpg = 57'7 ;5— (3.209)

It is easy to see that equations (3.19) and (3.20) are identical by puttingx = r,
y =0, o, = 0, and 0,, = 0y in equations (3.19). Note also that

P(1+v)z
0r+09+02=_'7_T p

(3.20¢)

3
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The direct and shear stresses 0, and 7,, which act on planes within the solid
parallel to the free surface are independent of Poisson’s ratio. Consider the
resultant stress ¥ acting on elements of such parallel planes. Where those planes
intersect the spherical surface of diameter d which is tangential to the surface
of the half-space at O, as shown in Fig. 3.2, X is given by

2 = (0} +1,2)'*=— — = —— = constant

and the direction of the resultant stress acts towards Q. There is some analogy

in this result with that for a concentrated line load discussed in the last chapter

(82.2 and Fig. 2.2). In the three-dimensional case, however, it should be noted

that X is not a principal stress and that the principal stress does not act in

a radial direction, nor are the surfaces of constant principal shear stress spherical.
Timoshenko & Goodier (1951) derive the strains from the stresses and

integrate to obtain the displacements as was done in §2.2 with the results:

| P (= (1— )22 (3.21a)
u,= —\!—=—(1—2 2la
’ 41rG{p3 or }
P (z? 2(1—v)
u,= ——|— + (3.21b)
47G \ p3 p

The results are consistent with equations (3.18). On the surface of the solid
(z=0)

_ 1—2P (3.220)
i.=— — 22a
i’ 4G 1
(1—-v) P
u,= — 3.22b
z 220G r ( )

From equation (3.2254) we note that the profile of the deformed surface is
a rectangular hyperboloid, which is asymptotic to the undeformed surface at
a large distance from O and exhibits a theoretically infinite deflexion at O, as
shown in Fig. 3.2.

The stresses and deflexions produced by a normal pressure distributed over
an area S of the surface can now be found by superposition using results of the
last section for a concentrated force. Referring to Fig. 3.1, we require the surface
depression it, at a general surface point B(x, ) and the stress components at an
interior point A(x, y, z) due to a distributed pressure p(&, n) acting on the
surface area S. We change to polar coordinates (s, ¢) with origin at B such that
the pressure p(s, ¢) acting on a surface element at C is equivalent to a force of
magnitude ps ds d¢. The displacement of the surface at B due to this force can
be written down from equation (3.22b) in which r = BC = 5. The displacement
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at B due to the pressure distributed over the whole of S is thus:

1—12
By= — f f p(s, ) s dg (3.23)
7TE S

The stress components at A can be found by integrating the stress components
for a concentrated force given by equation (3.19).

33 Pressure applied to a polygonal region

(a) Uniform pressure

We shall consider in this section a uniform pressure p applied to a region
of the surface consisting of a straight-sided polygon, as shown in Fig. 3.3(2). It is
required to find the depression i1, at a general point B(x, y) on the surface and
the stress components at a subsurface point 4(x, y, z). BH,, BH,, etc. are perpen-
diculars of length 4y, k5, etc. from B onto the sides of the polygon DE, EF’
respectively. The loaded polygon is then made up of the algebraic addition of

D
sy =hsec¢
b,
d¢ =
5 \ds
B ? H
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eight right-angle triangles:
DEFG = [BEH, + BEH, + BFH, + BFH,]
—[BDH, + BDH 4+ BGH3 + BGH,]

A similar breakdown into rectangular triangles would have been possible if
B had lain inside the polygon. A typical triangular area is shown in Fig. 3.3(d).
If the pressure is uniformly distributed, equation (3.23) becomes

N 1 —»? &, S
Gop=— o[ a0 | "
mE 0 0

1“‘1)2 f‘bl )

= hsec ¢ d

- p . ¢ do
1—2% & {1+sin¢1}

= p—In{——
nE 2

The total displacement at B due to a uniform pressure on the polygonal region
DEFG can then be found by combining the results of equation (3.24) for the
eight constitutive triangles. The stress components at an interior point A(x,y, z)
below B can be found by integration of the stress components due to a point
force given by equations (3.19), but the procedure is tedious.

The effect of a uniform pressure acting on a rectangular area 2a x 2b has
been analysed in detail by Love (1929). The deflexion of a general point (x, y)
on the surface is given by

nE

1—v

3.24
1 — sin ¢, (3.24)

2

Y+ +H{(y+b) +(x + 0)2}”2]
(y—d)+{(y —b)Y +(x +a)*}'"
G+ {0+ + G+ PP
T+ {(x Oty b+ (x —0)2}1’2]
(=) +{(y—b*+ —0)2}“2]
D)+ B + G af )

Uy
——=(x+a)1n[
p

+(x—a)ln[

x—a)+{(y-b’+@x—a’}"
(x+a)+{(y —b)*+ (x +a)*}'"?
Expressions have been found by Love (1929) from which the stress compo-
nents at a general point in the solid can be found. Love comments on the fact
that the component of shear stress 7, has a theoretically infinite value at the

corner of the rectangle. Elsewhere all the stress components are finite. On the
surface, at the centre of the rectangle:

[ox]o = —p{2v + 2/m)(1 — 2») tan"Y(b/a)} (3.26a)

+(y —b) In[ ] (3.25)
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[0y]0 = —p{2v + (2/m)(1 — 2) tan"*(a/b)} (3.26b)
l[o;o=—p (3.26¢)
These results are useful when a uniformly loaded rectangle is used as

a ‘boundary element’ in the numerical solution of more general contact
problems (see §5.9).

{b) Non-uniform pressure

Any general variation in pressure over a polygonal region can only be
analysed numerically. In this connection it is useful to consider a triangular area
DEF on which the pressure varies linearly from p; at D to p, at E to py at F,
as shown in Fig. 3.4, i.e. the pressure distribution forms a plane facet def.
Any general polygonal region can be divided into triangular elements such as
DEF. 1In this way a continuous distribution of pressure over the whole polygonal
surface may be approximated by linear facets acting on triangular elements
such as the one shown in Fig. 3.4. This representation of a continuous pressure
distribution may be regarded as an improved approximation upon a series of ,
boundary elements in each of which the pressure is taken to be uniform, since
discontinuities in pressure along the sides of the elements have been eliminated
and replaced by discontinuities in pressure gradient.

The element shown in Fig. 3.4 can be further simplified by splitting it into

three tetragonal pressure elements: the first having pressure p; at D which falls
linearly to zero along the side of the triangle £F; the second having pressure p,

Fig. 3.4
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at £ which falls linearly to zero along FD; and the third having pressure p; at
F which falls to zero along DE.

Influence coefficients for the normal deflexion of the surface i2,(x, y) due to
the pressure distribution shown in Fig. 3.4 have been calculated by Kalker
& van Randen (1972) in connection with the numerical solution of contact
problems. Similarly Johnson & Bentall (1977) considered the deflexion of
a surface under the action of a pyramidal distribution of pressure acting on
a uniform hexagonal area of an elastic half-space. The maximum pressure pg
acts at the centre O of the hexagon and falls to zero along the edges. The deflex-
ion at the centre (i, )o was found to be 3+/3 In 3(1 — »?)poc/2nE and that at
an apex to be (i1,)o/3, where ¢ is the length of the side of the hexagon. Explicit
results for a polynomial distribution of pressure acting on a triangular area have
been found by Svec & Gladwell (1971).

The stresses and deformations produced by a pressure distribution of the form

po(1 —x%/a*)'"? acting on the rectangle x = +a,y = +b have been calculated
by Kunert (1961).
34 Pressure applied to a circular region

A circular region of radius ¢ is shown in Fig. 3.5. It is required to find
the displacement at a surface point B and the stresses at an internal point 4 due
to pressure distributed over the circular region. Solutions in closed form can be
found for axi-symmetrical pressure distributions of the form:

p =po(l1 —r/a*)" (3.27)
We will consider in detail some particular values of .

(a) Uniform pressure (n = Q)

Regarding the pressure p at C, acting on a surface element of area
5 ds d¢, as a concentrated force, the normal displacement is given by equation
(3.23), i.e.

1 —v?
U, = do¢ d
Uz o pfsf ¢ ds

We will consider first the case where B lies inside the circle (Fig. 3.5(z)). The
limits on s are

$1,2 = —rcos¢ t{r? cos® ¢ + (a® —r?)}!"? (3.28)
Thus
1—p?
u,= P J 2{r* cos* ¢ + (&®> —r*)}*'% d¢
7k 0

1—p? w2
ij* {1"’(r2/112)sin2 ¢}1/2 d¢

nkE 0
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ie.
1—v*)pa
i,= u E(r/a), (r<a) (3.29)
7k
where E(r/a) is the complete elliptic integral of the second kind with modulus
(r/a). At the centre of the circle: r = 0, E(0) = n/2, thus

(#iz)o = 2(1 —v*)pa/E.
At the edge of the circle: r/a = 1, E(1) = 1, then
(#5)e=4(1— v )pa/nk
The mean displacement of the loaded circle is 16(1 — v*)pa/3nE.
In view of the axial symmetry, the displacement tangential to the surface

must be radial. By equation (3.222) the tangential displacement at B due to an
element of load at Cis

(1—20)(1+v) psdsd¢
2nE s

Fig. 3.5. Pressure applied to a circular region. Displacement: (@) at an
internal point B; () at an external point B.

S
S
p C(s, ¢)
a s
0 4
o\ r /B(r,0)
$2
(@)
52
A
a
S

1G]
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in the direction from B towards C. Thus the radial component of this displace-

ment is: (1= 2)(1 + )
—2v v
U,= ————pcospdsd

r o E p ¢ ¢

The total displacement due to the whole load is then
1—2)(1+v 2m

a,= (————)—(————) p j {—rcos¢+ (r* cos? ¢ + a®> —r*)'"?}

2nE 0

x cos ¢ d¢

The second term in the integral vanishes when integrated over the limits O to
2m, hence
u,=—1 =201 +V)pr/2E, r<a (3.29b)

We turn now to a point B on the surface outside the circle (Fig. 3.5(b)).
In this case the limits on ¢ are ¢, so that

2(1 -2 s
L_‘z = L‘K.)E (a'l __r2 Sinz ¢)1/2 d¢)
nE 0
We change the variable to the angle A, shown in Fig. 3.5(b), which is related

to ¢ by
asinA =rsin ¢

whereupon the expression for #, becomes:
41— /2 a* cos? X dA
u = —

: nE Jl, r{1—(a*/r*) sin*> \}

4(1—v?)
= — pr{E(a/r) — (1 —a%/r*)K(a/r)}, r>a (3.300)

where K(a/r) is the complete elliptic integral of the first kind with modulus

(a/r).
The tangential displacement at B is radial and is given by
2(1—2v)(1 +v) ?, )
0, =———— pJ cos ¢ (a*—r?sin® )2 d¢
nk 0

Changing the variable to A, as before, gives

20— 2)(1+v) a? p7/2
u,=-—£-——~)—(—~——)p—j cos® X dA
nE rJo
(1—=2)(1+») 4
=————p—, r>a 3.30b
2F P r ( )

Since the pma? is equal to the total load P acting on the whole area, we note
that the tangential displacement outside the loaded region, given by (3.308),
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is the same as though the whole load were concentrated at the centre of the

circle (see equation (3.224)). It follows by superposition that this conclusion

is true for any axially symmetrical distribution of pressure acting in the circle,
The stresses at the surface within the circle may now be found from equations

(3.29). Thus:

di, i, A=) +v)
&= —=€=—=" —"T"—— 331
T o 2F ( )
from which, by Hooke’s law, we get
6,=69=—%(1+2v)p, 0,=—p (3.32)

To find the stresses within the half-space along the z-axis we make use of

equations (3.20) for the stresses due to a concentrated force. Consider an
annular element of area 2z dr at radius . The load on the annulus is

2nrp dr, so substituting in (3.20¢) and integrating over the circle gives

a rz3
0;="3p J.o ( +22)57? dr
=—p{1—-23/(@a*+2?)*?} (3.33q)

Along Oz, 0, = 0, hence applying equation (3.20e) to an annulus of pressure

(1+vp) (e 2mrzdr
o, t0g+0,=— - J.Om
=2(1+v)p{z(a®+z¥) > — 1}
so that
1+ 2 (1+v)z z?
Or=0p="P { 3 _(a2 +22)12 + 22 + 22)3/2} (3.33b)

The stress components at other points throughout the half-space have been
investigated by Love (1929).

(b) Uniform normal displacement (n = —3

We shall proceed to show that a pressure distribution of the form
p=po(1—r/a®)""? (3.34)
gives rise to a uniform normal displacement of the loaded circle. This is the
pressure, therefore, which would arise on the face of a flat-ended, frictionless
cylindrical punch pressed squarely against an elastic half-space. It is the axi-
symmetrical analogue of the two-dimensional problem discussed in §2.8.
Referring to Fig. 3.5(a):

t?=r2+ s>+ 2rscos ¢
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so that
p(s, $) = poa(e® — 20s —s?)™'2 (3.35)
where a® = ¢* — r? and § = r cos ¢. The displacement within the loaded circle,
using equation (3.23), is
1—?

2w 5,
u,(r)= poaf d¢f (a? —2Bs —s2)12 ds
0 0

where the limit s, is the positive root of
o —26s—s2=0
Now
5 m
J‘ (> —28s—5*) V2 ds = 5~ tan"(g/a)
0
and
tan™ {f(¢)/a} = —tan™" {f(¢ + m)/a}

so that the integral of tan™!($/a) vanishes as ¢ varies from O to 27, whereupon

1—v 2T (q
u,= Pod-[ {— — tan'l(ﬁ/a); d¢ = n(1 —v¥)pea/E  (3.36)
F 0 2

which is constant and independent of 7. The total force

a
P =J 2mrpo(1 —r‘z/az)'”2 dr = 2na’p, (3.37)
0

When B lies outside the loaded circle (Fig. 3.5(b))
p(s, ¢) = poa(a® + 2ps —s*) 7'
and the limits s, , are the root of o? + 2fs — s* = 0, whereupon

Sz
f (@®>+28s—s2) M2 ds=n
5
The limits on ¢ are ¢, , = sin"'(a/r), so that

i) =

—) poa sin~*(a/r) (3.38)

Like the two-dimensional punch, the pressure is theoretically infinite at the edge
of the punch and the surface has an infinite gradient just outside the edge.
Stresses within the half-space have been found by Sneddon (1946).

(c) Hertz pressure (n = %)
The pressure given by the Hertz theory (see Chapter 4) which is
exerted between two frictionless elastic solids of revolution in contact, is given by

p(r) =po(@® —r*)""*/a (3.39)
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from which the total load P = 21poa?/3. The method of finding the deflexions
is identical to that in the previous problem (§3.45) and uses the same notation
Thus, within the loaded circle the normal displacement is given by

1—v% po (2

m s,
— dqu~ (o —28s —s%)!/2 ds (3.40)
nE aJo 0

u,(r) =

ISl (o —2Bs —s*)""? ds = —Jof+ (o + %) {(n/2) — tan™" (B/)}

0

The terms fa and tan™"(/a) vanish when integrated with respect to ¢ between
the limits O and 27, whereupon

1—v? g
u,(r)= p_()_f — (@ —r*+r?cos? ¢) do

nE  aJy 4
1—v?
== _211’(242—#), r<a (3.41a)

To find the tangential displacement at B, which by symmetry must be radial,
we make use of equation (3.22a2). The element of pressure at C causes a tangential
displacement at B:

(1—2v)(1+v)

2nE
directed from B towards C. The radial component of this displacement is
(1—-2n(1 +v)

2nE

so that the resultant tangential displacement at B due to the whole pressure
distribution is

pdsd¢

cos ¢ p ds do

(1-=2nQ1+v) Po

u,r)=
A 2nE a

2n )
f cos¢d¢fs (o —2Bs —s*)!"? ds
0

0

The integration with respect to s is the same as before; integrating with respect
to ¢ gives
(1—=2v)(1+v)a*

,(r) = T7po{l—(l—r2/az)3’2}, r<a (3.41b)

When the point B lies outside the loaded circle, proceeding in the same way as
in the previous case, we find

(1-v*) po
E 2a
x {(2a* —r*) sin"}a/r) + r*(@/r)(1 —a*/r*)'V?}, r>a (3.422)

z
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The tangential displacement outside the loaded circle is the same as if the load
were concentrated at the centre, so that, by equation (3.22a)
(1—2)1+») a*
Uy=————"————po—, r>a 3.42b
r 3E Po ’ ( )

The surface strain components: €, = 9it,/dr and €y = it,/r can be found from
equations (3.41) and (3.42) which, together with the pressure, determine the
stresses in the surface z = 0 with the result that, inside the loaded circle,

1—2»

Blpo =~ @) {1=(1=raP?} = (A=) (3:43)

—~ 1—2 27 2\1/2

B0/po=— —— @/r"){1—(1 =r*/a®)**} = 2(1 —r*/a*)
(3.43b)

0./po =—(1 —r*/a?)!? (3.43¢)

and outside the circle
5,/po = —8p/po = (1 — W)a?[37 (3.44)

The radial stress is therefore tensile outside the loaded circle. It reaches its
maximum value at the edge of the circle at r = 4. This is the maximum tensile
stress occurring anywhere. The stresses along the z-axis may be calculated
without difficulty by considering a ring of concentrated force at radius r.
They are:

"= - (14 9) (1 efa) tan N af2)} + 31+ 2Ya?)T (B4s0)
Po Do
; = —(1 + 2%/a?)! (3.45b)

The stresses at other points throughout the solid have been calculated by Huber
(1904) and Morton & Close (1922). This stress distribution is illustrated in

Fig. 4.3 where it is compared with the stresses produced by a uniform pressure
acting on a circular area given by equation (3.33). Along the z-axis 0,, 0y and
o, are principal stresses. The principal shear stress, 7, = Jo,— o7, is also

plotted in Fig. 4.3. It has a maximum value which lies below the surface. For
the Hertz pressure distribution

(T)max = 0.31po = 0.47P/na? (3.46)
atz = 0.57a.
For the uniform pressure distribution
(T max = 0.33p = 0.33P/na® (3.47)

at z = 0.644. Both the values above are computed for v = 0.30.



Pressure on an elliptical region 63

(d) General pressure (n=m — 3

A pressure distribution of the form

P =poa' "M (a* —r2y" 11 (3.48)
where m is an integer, will produce a normal displacement within the loaded
region given in the notation of equation (3.35) by:

o = 1;”2 _p_"_f”d¢rl (a® —28s—s*)™ 12 g5 (3.49)

nE @™ 1), 0

Reduction formulae for the integral with respect to s enable solutions to be found
in closed form (see Lur’e, 1964). The resulting expressions for &, are polynomials
in r of order 2m. Thus, in the examples considered above: m = 0 results in

U

a constant displacement; m = 1 results in a displacement quadratic in r.

Alternative methods, which link polynomial variation of displacement with
pressure distribution of the form p,, = poa' 2" r?™(@? — r?)"V'2 have been
developed by Popov (1962) using Legendre polynomials and by Steuermann
(1939). In this way, if the displacement within the loaded circle can be repre-
sented by an even polynomial in r, then the corresponding pressure distributions
can be expressed in the appropriate sum of distributions having the form p,,
defined above (see §5.3).

3.5 Pressure applied to an elliptical region

It is shown in Chapter 4 that two non-conforming bodies loaded
together make contact over an area which is elliptical in shape, so that the
stresses and deformation due to pressure and traction on an elliptical region
are of practical importance. A circle is a particular case of an ellipse, so that
we might expect results for an elliptical region to be qualitatively similar to
those derived for a circular region in the previous section. This is indeed the
case, so that we are led to consider pressure distributions of the form

p(x,y) =po{l—(x/a)’ — (y/b)*}" (3.50)
which act over the region bounded by the ellipse

(x/a)® +(¥/b)* —1=0
The classical approach, using the potential functions of Boussinesq, is usually
followed. Thus, by equation (3.10),

Y, p,2) = f f (0 (£/ay— (/b)Y p= de @3.51)
S

where p? = (¢ —x)? + (n —y)? + z2. The normal displacement of the surtace
is then given by equation (3.16¢), viz.:

7,(x,7) = % W)s =0
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It then follows from potential theory (see, for example, Routh, 1908, p. 129)
that for a general point in the solid

~ l"(n + I)F(%) o0 B x2 y2 Z2 )n+1/2
Y(x,y,z)= m poabf (l

a+w bPP+w w

Ay
dw
X {(@® + w)(b* + wyw}'’?

where I' denotes a gamma function and where A, is the positive root of the
equation

(3.52)

x2 y2 Z2
+ +—=1 (3.53)
a?+N bB2HN A
A; may be interpreted geometrically as the parameter of an ellipsoid, confocal
with the given elliptical pressure region, whose surface passes through the point
in question (x, y, z). To find ¥(x, y, 0) at a surface point within the loaded
region the lower limit of the integral in (3.52) is taken to be zero.
A few cases in which » takes different values will be discussed.

(a) Uniform displacement (n = —%)

Putting n = —3 in equation (3.52) gives:

o dw
X,V,z) = mpgab 3.54
VG, 2) = o L, e (3.54)
and on the surface z = 0, within the loaded region,
VG, 7, 0)=mpoab | i (3.55)
x,y,0)="7poa .
g Po fo {@ + w)(d* + ww}'’?

This integral is a constant independent of x and y; it is an elliptic integral which,
when put into standard form and substituted into equation (3.16¢), quoted
above, gives
1—?
i, = 2pobK(e) (3.56)
E ~

where e = (1 — b?/a*)"/? is the eccentricity of the ellipse, and ¢ = b. This is
the uniform displacement of a half-space under that action of a rigid frictionless
punch of elliptical plan-form. The pressure on the face of the punch is

p(x,y)=po{l —(x/a)* —(y/b)*}'" (3.57)
where the total load P = 2mabp,. The displacement under a cylindrical punch

given by equation (3.36) could be obtained by puttingga=»bore=1in
equation (3.56).
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(b) Hertz pressure (n = %)

In this important case the pressure is

p=po{l —(x/a)* —(y/b)*}'"* (3.58)
Thus

oo x2 y2 22
w(xayaz):%ﬂabPOJ (1_ - ———)

a+w b +w w

}\l
dw 5
X 3.5
(@ + W)+ ww}" (3.59)
and on the surface, within the loaded region,
. oo x2 y2
x,¥,0)=3mab 1— - )
Y(x,»,0) =2 Pofo ( 2tw b tw
ld 3.60
X .
{@® + w)(B* + w)w}'/? (3.60)
The surface displacement within the loaded region may then be written:
o 1=? ) s
U, = — (L — Mx* — Ny*) 3.61)
where
npoab dw
B o (@ +wP® +ww}E Er ;KO ~EQ)
(3.62q)
npoab dw _ Tpeb a?
2 3,,11/2 2,2 {_2 E(e) —K(e)
o {@+w)(B*+ w)w} e’a® \b
(3.62b)
and
npoab dw
= nmpobK(e) (3.62¢)

o {(@+w)®*+ww}’?

The total load acting on the ellipse is given by

P =2mabp,/3 (3.63)
Finding the components of displacement and stress at a general point in the
solid from equation (3.59) is not straightforward, firstly because the limit A,

is the root of a cubic equation (3.53) and secondly because, for certain stress
components, it is necessary to determine the auxiliary function y, = f,” ¢ dz.
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The difficulties are least when finding the stresses along the z-axis. In this case
A, = z2, and the integration with respect to z to determine the derivatives of
Y is straightforward. These calculations have been performed by Thomas

& Hoersch (1930), Belajev (1917) and Lundberg & Sjovall (1958) with the
results that along the z-axis

o, 2b

=== (Q,+ Q) (3.642)

Po €4

%2 o ) (3.64b)

pe e’ y .

0, b (1-T

p—oz_Z( . ) (3.64¢)
where

Qe =—3(1 —T) + {{F(¢, ) — E(¢, e)}

Q= 1—(a*T/b*) + {{(a*/b*)E(p, ) — F(9, €)}

Q, =3+ (1)27) — (Ta*/b*) + § {(a*/b*)E(9, &) — F(9, €)}

Q; =—1+ T+ ¢{F(¢,e) —E(¢, e)}

a2+22

The elliptic integrals F(¢, €) and E(¢, €) are tabulated.t Within the surface of
contact, along the x-axis

b2+z2 1/2 z
T=( ) , ¢=—-=cot¢
a

Oy b x ex
—=—y—(1-2) —; {(1 — by/a) —— tanh™ (—)} (3.65a)
Do ae ae a+ by
o b a x ex
—y=——2v7——(1—2v)—{(—7—1) +—tanh_1( )} (3.65b)
Do ae® \\ p ae a+ by

and along the y-axis
Oy b y aey
— ==y~ (1—2) — {(1—by/a) —= tan™* (———————)} 3.66a
= (1=2) = {1 = b =% an? (525 )} G660
o b a ae
L=—py—(1~— 2v) — {(—7 — 1) + Y tan™! (—y )} (3.66b)
Po ae* \\ b ae b(ay + b)

where y = {1 — (x/a)> — (y/b)*}'2.

At the centre (x =y = 0)

Ox
—==—(1—2) (3.67a)
Do atb

1 Abramowitz, M. & Stegun, 1. A., Handbook of Math, Functions, Dover, 1965.
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Oy
= ==20—(1—2W)
Po atb

(3.67b)

Outside the loaded ellipse the surface stresses are equal and opposite, i.e. there is
a state of pure shear:

o o b x ex ae
—x=——y=~(1—2u)——2 {1“—'[311}'1—1 (—)—ztan‘l (b—i))}
ae

Do Do ae a ae
(3.684q)
and
b ex x ae
Tyy=—(1—2) — { Y tanh? ( —) ——tan™’ (—f)} (3.68b)
ae“ \ae a ae b

Fessler & Ollerton (1957) determined the shear stresses 7,, and 7,,, in the planes
of symmetry y = 0, and x = 0 respectively, with the result

M A B N T2
N
Tax b x (z\? a*/ a* a®
Tx _ 0 X (_) (3.69)

Do a a ( ax )2 (az)2
+ -
a2 + >\1 >\1

>\1 >\1 -3/2 a2 }\1 ~1/2
23
Tyz ay(2)2 b2/ b b b?
Po bb\b ( by )2+(bz)2
b% + A, A
where A, is the positive root of equation (3.53). Expressions from which the

stress components at a general point can be computed have been obtained by
Sackfield & Hills (1983a).

a

and

(3.69b)

(c) General pressure (n =m — 3 )
In this case it follows from equation (3.52) that the surface displace-
ments within the ellipse are given by
1—»? 1—2* T(n + HIGF)

nE N/]z=0 - E I"(n+§)

L_tz(x,y)= poab

o x? ¥\ dw
X fo (1 4w b4 w) {@* +w)(®* + ww}'’?
(3.70)
By expanding the bracket under the integral sign it is apparent that the expres-



Point loading of an elastic half-space 68
sions for the displacement will take the form

I=m
i, =Cot Y Cux2ly>m=h (3.71)
=1

Alternatively if the displacements within the ellipse are specified by a poly-
nomial of the form (3.71), which would be the case if the half-space were being
indented by a rigid frictionless punch, then the pressure distribution on the
elliptical face of the punch would take the form

I=m
p(x,y) =po(ab)™ ¥ Cpx*ly? "D {1 —(x/a)’ — (y/0)*} 7
=1

(3.72)

General expressions for finding the relation between the coefficient C; and
C; are given by Shail (1978) and Gladwell (1980).

3.6 Concentrated tangential force

In this and the next section we shall investigate the displacements and
stresses due to a tangential traction g, (£, n) acting over the loaded area S. The
tangential traction parallel to the y-axis q,, and the normal pressure p are both
taken to be zero. Thus in equations (3.2) to (3.7) we put

GI=H1:G=H=O

thus
_OF Ry
Y x ~ 3xdz
whence
1 9% F, 3%F, 3 F,
ux=a(—; {2 Py +2V8x—2—28x282: (3.73a)
1 9% F, *F,
= anG {2V oxdy o 0x0ydz } (3.73)
% F, 9%F,
U, = G {(1 —2) Py —z 8x822} (3.73¢)
where
F1=qu(s,n) {zIn(p +2)—p} df dn

and
pP=(E—x) "+ (n—y) 2’
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When the appropriate derivatives are substituted in equations (3.73), we get

J qu(é n)

{ 1—2 (E ) (1= —x)
-

} dt dn (3.74a)

o+z P p(p +z)?
qux(é,n)
{w —(-— 2)W}dgd (3.74b)
‘e 4nGfo(s ){E_ > ra=mm) ((E_ ))}dsd77

(3.74¢)

The tangential traction is now taken to be concentrated on a vanishingly
small area at the origin, so that fs fq,(§, n) d¢ dn reduces to a concentrated
force Q, acting at the origin (§ = n = 0) in a direction parallel to the x-axis.
Equations (3.74) for the displacements throughout the solid reduce to
2

23 ~1+x2+(1 2): al (3.75q)
- +— — 2 - .
T ancly o p+z p(p+2)2” ‘
Q[ Xy
Uy = R ‘;—3 (1 2V) p——(p +Z)2] (375b)
N PP 3.75
T dn o ’ p(p+2)] (3.73¢)

where now p? =x2 4+ y? + 22,
By differentiating equations (3.75) the strain components and hence the
stress components are found, with the results

210, 3x®

Ox
{x 3x N x3 N 2x3 } (3.760)
- .10a
p® plp+z2? p(p+2)? p*(p+2z)

2n0 3x

_y=——y +(1—2)

Ox p°
x x xy? 2xy?
1= - L 3} (3.76b)
p® plptz)' p(p+z)" p*(p+z)
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2na, 3xz? (3.760)
=— — 76¢
Ox p°
20T 3x2
Q"y =22 (1-w)
P
X
S O ¢ A } (3.764)
p(p+2)* p(p+2)* p*(p+2)°
2T 3xyz
vz
=— (3.76¢)
Ox p°
2nT 3x%z
T (3.76f)
Qx P
2n
Q— (0x + 0y + ;) = —2(1 + v)x/p> (3.762)
X

The stresses and displacement on the surface, excluding the origin, are obtained
by putting z = 0, and p = r. These expressions can be used to build up the
stress components within the solid due to any known distribution of tangential
traction by superposition.

3.7 Uni-directional tangential tractions on

elliptical and circular regions

The influence of tangential traction has not been studied so extensively
as that of normal pressure, but tractions of the form

ax(x,¥) = qo{1 — (x/a)* — (y/b)*}" (3.77)
which act parallel to the x-axis on an elliptical area bounded by the curve
(x/a)* +(y/b)* —1=0 (3.78)

are important in the theory of contact stresses. These tractions are comparable
with the pressure distributions considered in §5 (see equation (3.50)). To
examine the extent to which the problems are analogous we should compare
equations (3.73) for the displacements due to tangential traction with equations
(3.11) for the displacements due to normal pressure. Remembering that

Yy = 0H;/dz and Y = 8°H,/dz?, it is immediately apparent that there is no
complete analogy between the two sets of equations: the displacements due to
a tangential traction cannot be written down directly from the known displace-
ments due to a similar distribution of normal pressure. However a very restricted
analogy does exist. In the case where Poisson’s ratio is zero, the surface dis-
placements due to a tangential traction may be written:
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~ 1 02 Fl _
e T
) | R, (3.79)
“* " 4nG axoz
whilst the corresponding displacements due to normal pressure are
o 1 8%H,
ux:uy:_éyGaxaz
I 228, (3.80)
2 27T—G 0z2

We recall from the definitions given in (3.2) that F; and H, are analogous so that,
under the action of identical distributions of tangential and normal traction

gx and p,
(e )q = (Uz)p
and (3.81)

(az )q = _(ax )p
provided that v = 0. It will be remembered that this analogy exists for two-
dimensional loading of a half-space whatever the value of Poisson’s ratio
(cf. equation (2.30)).
For non-zero values of Poisson’s ratio it is not possible to use equation (3.52)
from potential theory to find the function 32F,/dz* corresponding to {, and
we must proceed instead from equations (3.74).

(a) Circular region, n = —%
We will consider first the distribution of traction:

ax(x,») = qo(1 —1*/a®)7"? (3.82)

acting parallel to Ox on the circular region of radius @ shown in Fig. 3.6.
A pressure distribution of this form (equation (3.34)) produces a constant normal
displacement of the surface within the circle. By the analogy we have just been
discussing, for » = 0, the tangential traction given by (3.82) would produce
a uniform tangential displacement of the surface iz, in the direction of the
traction. We shall now proceed to show that the given traction still results in
a uniform tangential displacement for non-zero values of ».

Restricting the discussion to surface displacements within the loaded circle
(r <a) equations (3.74) reduce to

1—v (=)
= f [t W {— v aran (3.830)
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_ v (¢—x)(n—y)
Uy = ﬁfsqu(é,n) s d¢ dn (3.83b)

g $TX 4 d 3.83
== fsqu(é,n) 2 gdn (3.83¢)

where 2 = (£ —x)* + (n —y).

These expressions for the surface displacements could also have been derived
by superposition, using equations (3.75) for the displacements at a general
point B(x, y) due to a concentrated tangential force Q, = g, d¢ dn acting at

CE, m).
In order to perform the surface integration we change the coordinates from
(&, 1) to (s, ¢) as shown, where

g2+ n*=(x+scosp)®+(y+ssin¢)?

Puttinga? =a®> —x?> —y?and f=x cos¢ + y sin ¢

qx(s, 9) = qoa(o® — 26s —s*) 7" (3.84)
Equations (3.83) then become
1 2n s,
Uy, =—— J. 95 (s, 9){(1 —v) + v cos® ¢} dp ds (3.852)
27G 0 0
Fig. 3.6
Ay
q q' @)
D
¢ ax
a ! S,
s
8 A ¢
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2w
Uy = d f g (s, 9) sin ¢ cos ¢ d¢ ds (3.85b)
27rG
_ __1_21) 2n ~5, 4o d 38
b= fo fo 4x(s, ) cos ¢ dp ds (3.85¢)

The limit s, is given by point D lying on the boundary of the circle, for which
5= =B+ (@ + )

Integrating first with respect to s, we have

le (o —28s —s*) V2 ds = /2 — tan™ ! (/)
0

When performing the integration with respect to ¢ between the limits O and
2m, we note that f(¢) = —B(¢ + =), so that for (r <a)

ux_‘% {(1—1})+VCOS ¢} dg
_M2TY) o constant 3.86a
B 4G dod = constan ( ’ )
i =0 (3.86b)
1—2 2w
7, = %ﬁz fo cos ¢ tan”'(B/a) d¢
LGP o @) (3.860)
2G r r

The normal traction given by (3.34) which produces a constant normal
displacement of the surface within the circle (r < ) was interpreted physically
as the pressure which would be exerted on the flat face of a rigid frictionless
cylindrical punch pressed into contact with the surface of an elastic half-space.
By analogy, therefore, we are tempted to ask whether the tangential traction
we have just been considering (3.82) represents the shear stress in the adhesive
when a rigid cylindrical punch, whose flat face adheres to the surface of an
elastic half-space, is given a tangential displacement parallel to the x-axis. How-
ever difficulty arises due to the non-zero normal displacements given by (3.86¢),
so that the punch face would not fit flush with the surface of the half-space
without introducing additional tractions, both normal and tangential, at the
interface.

The tractions acting on the surface of a rigid cylindrical punch which adheres
to the surface of a half-space and is given a displacement in the normal direction
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have been found by Mossakovski (1954) and Spence (1968). The pressure
distribution on the face of the punch with adhesion is not very different from
that when the punch is frictionless. This was also shown to be the case for
a two-dimensional punch (§2.8). The problem of finding the tractions for an
adhesive cylindrical punch which is given a tangential displacement has
been solved by Ufliand (1967). By analogy with the case of normal
displacements, the shear traction on the punch face was found to be close
to that given by (3.82). This approximation amounts to neglecting the
mismatch of normal displacements with the flat face of the punch.
Obtaining expressions in closed form for the stress components within the
solid is extremely involved. The variation of 7,, along the z-axis due to the
traction (3.82) is given by

Txz = —Po(1—2%/a®) (3.87)

(b) Elliptical region, n = —3%
When a tangential traction
2

x y2 -1/2
dx=qo (l-—a—2 —~) (3.88)

acts parallel to Ox on an elliptical region of semi-axes a and b Mindlin (1949)
has shown that the tangential displacement of the surface is again constant and
in the Ox direction. Within the elliptical region

qob 14
= [K(e) - 2 {(1—-e*)K(e)— E(e)}:\ , a>b

U, = (3.892)
t_]_gz_ [K(e) — ;V; {K(e) — E(e)}] , a<b

i, =0 (3.89b)

(¢) Circular region, n =3

The distribution of traction

@x =qo(1 —r*[a®)'" (3.90)
acting on a circular region of radius 2 may be treated in the same way, by
substituting (3.90) into equations (3.85) to find the surface displacements
within the circle (r < a). The integration with respect to s is the same as in

(3.40). Using that result and omitting the terms which do not contribute to
the integration with respect to ¢, we find
nqo

Uy = :;2_0_0 {42 —v)a? —(4 —3v)x? —@4 _V)y2} (391a)
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Similarly

_mg
iy = ° ouxy (3.91b)

In this case i, is not constant throughout the loaded circle and &, does not
vanish. Again we note that the normal displacements are not zero although we
shall not evaluate them explicitly.

The tangential surface displacements outside the loaded circle (¥ > @) due to

the traction given by (3.90) have been found by Illingworth (see Johnson,
1955) with the results:

= 0 (2= p){(24® =) sin" afr) + ar(1 — a2 )7}
8Ga
+5v{r? sin"!(a/r) + (28> —r*)(1 — 2 r*) (@)} (x* — y*)]

(3.924)
L_ly = ‘8(1_21 {rz sin'l(a/r) + (2(12 —7‘2)(1 _a2/r2)1/2(a/r)}xy (392b)
a

A comprehensive investigation of the stresses within the solid due to the
traction (3.90) has been carried out by Hamilton & Goodman (1966) and
Hamilton (1983). Their results are discussed in §7.1(?) in relation to sliding
contact,

(d) Elliptical region, n =%
The corresponding traction
x2 y2 1/2
4x =qo (1—;5 _?) (3.93)
acting on an elliptical region of semi-axes 4 and b gives rise to tangential
diplacements within the ellipse given by

- _do4 2 2
u,=—(C—Ax* —By*) (3.94a)
2G
qod
u, =——Dx 3.94b)
y= g P (

where 4, B, C and D are functions of shape and size of the ellipse. They have
been expressed in terms of tabulated elliptic integrals by Vermeulen & Johnson
(1964). Stresses within the half-space have been found by Bryant & Keer (1982)
and Sackfield & Hills (19835).
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(e) Elliptical region, n = m — 3
Finally we consider a general distribution of traction of the form
x2 y2 m—1/2

R (3.95)
acting on an elliptical region of the surface. We saw in §5 that a pressure distri-
bution of this form gave rise to normal displacements which varied throughout
the elliptical region as a polynomial in x and y of order 2m. The two examples
of tangential traction which we have investigated, i.e. m = 0 and m = 1, have
resulted in surface displacements which, in the first case are constant - a poly-
nomial of zero order - and in the second case (equation (3.94)) vary through
the elliptical region as a polynomial of second order in x and y. Kalker (19672)
has proved that the general tangential traction (3.95) does give rise to tangential
surface displacements of order 2m in x and y, and has shown how the coefficients
of the polynomial can be computed. Thus if the displacements within the ellipse
are specified and can be approximated by a finite number of terms in a poly-
nomial series, then the resultant tangential traction which would give rise to
those specified displacements can be found as the sum of an equal number of
terms having the form of (3.95).

3.8 Axi-symmetrical tractions

An important special case of ‘point’ loading arises when the half-space
is loaded over a circular region by surface tractions, both normal and tangential,
which are rotationally symmetrical about the z-axis. The magnitudes of the
tractions are thereby independent of 6 and the direction of the tangential
traction is radial at all points. The system of stresses induced in solids of revolu-
tion by an axially symmetrical distribution of surface tractions is discussed by
Timoshenko & Goodier (1951, Chapter 13). It follows from the symmetry that
the components of shearing stress 7,4 and 74, vanish, whilst the remaining
stress components are independent of §.

A number of examples of axi-symmetric distributions of normal traction
were considered in §3.4. In this section we shall approach the problem somewhat
differently and include radial tangential tractions.

Referring to Fig. 3.6, we start by considering a normal line load of intensity
p' per unit length acting on a ring of radius . The normal and tangential dis-
placements at a surface point B(r, 0) are found from equations (3.182 and ¢)
for a concentrated normal force, with the result:

, 1—v* r7p'tdo
7L = 2[

nE 0 N
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' f " {(t +r)> — 41rsin(0/2)} 2 d(6/2)
0

1923

1—? 4p't
COnE t+r
where k% = 4tr/(t + r)2.

K(k) (3.96a)

_ (1—2»)(1+v) ™ tcos¢dl
TR PN L
2nE 0 S
1—=2v)(1+v
RS/ R )p’r/r, r>t (3.96b)
= FE
0, r<t (3.96¢)

Now consider a tangential line load of intensity ¢ per unit length acting
radially at radius z. At any point such as C, ¢’ is resolved into g = g’ cos § and
q;, = q' sin 6. The displacements at a surface point B due to concentrated forces
gt d0 and g,,r d6 acting at C are found to be from equations (3.75). Integrating
for a complete ring gives

7(r) = (ﬂ_ ¥ ()rf"“’—sede

N

A=y, 12 2
and
1—2v)(1+
2oy =1~ (-—%(——V) 7@, r<t (3.97b)
0, r>t (3.97¢)

The surface displacement due to a distributed pressure p(¢) and traction q(¢)
can be built up from equations (3.96) and (3.97) with the result

41— 2 1—2v)(1+ a
d-v )f p(r)K(k) dr—(:———lﬂ(—v)f q(t) dt

(3.9840)
_ 41—v?) et 2 2
U, = o . . q(f) { (k_2 l) K(k) ]? E(k): dr
1—2v)(1+ r
— (——————2: ) f tp(7) dt (3.98b)

When r > a the second term in equation (3.982) should be ignored and the
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upper limit in the second term in (3.98b) becomes a. These expressions enable
the surface displacements to be calculated, numerically at least, for any axi-
symmetric distributions of traction. They are not convenient however when
the surface displacements are specified and the surface tractions are unknown.
Integral transform methods have been developed for this purpose. This mathe-
matical technique is beyond the scope of this book and the interested reader is
referred to the books by Sneddon (1951) and Gladwell (1980) and the work
of Spence (1968). However we shall quote the following useful results.
Noble & Spence (1971) introduce the functions

1 1 pp(p)dp A q(p)dp
L) = — —_ = — _ I T 3.99
M=% Gomm M=z plmm G

which can be evaluated if the pressure p(p) and traction g(p) are known within
the loaded circle p(=r/a) < 1. Alternatively, if the normal surface displacement
i1,(p) is known within the circle due to p(p) acting alone, then

d '[" pi,(p) dp
2(1—v)a drJ, ()\2 p?)H?
or if the tangential displacement u,(p) due to q(p) acting alone is known, then
d J’ Aoa(p)dp
20 =v)ad\Jo > —p*)'?

The displacements and stresses throughout the surface of the half-space may
now be expressed in terms of L(A) and M(7), thus

2(1—2) L ALO) A
d { - le) d)\}

L) = (3.100)

MQ\) = (3.101)

()\2 p2)1/2
i} 4(1—v) P AM(N) dX
u'f_lp)= j. SO (3.1022)
21— ) 41—2) 1 AMQ) dA
L) d\ + _
'[ ( ) 7p o (p2_)\2)1/2
p>1
4(1—-11)"‘/’ L(\) dA _2(1—2V)J‘1 M(\) dx
| T 0 (p2_)\2)1/2 ()\2___p2)1/2’
ﬂz(p)z p<1
a 41—v) o L) AX
, >1
o L

(3.102p)
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Te(P) _ |55 T i PSI
5 26 7p dp o (N —p%) (3.1034q)
0: p>1
p(p) 2 d 1 MQ)d\
o(p) |75 T r e PSI
ALt 26 mpdpJ, A —p%)
2G
0, p>1 (3.103h)
21— 1 ALY dA 1
_plp) A ){ ) _J‘ L(k)dk}
26 7rp2 0 ()\2 __p2)1/2
0.(p) 4 (d 1—w\ (P AMQ)dX
LA
26 do p /Jo (P*—2%)'"?
200—2v d 1—w\ 1 AMQ)dA
( )f L(>\)d>\+—(—— )f Wdr
dp p 0 (p2_>\2)1/2
p>1
(3.103¢)
2v ( )+2(1—2v){ 1 AL(A) dA flLO\)dk
2Gp P 7.rp2 o ()\2_p2)1/2 o }
4 d 1—=w\pe MQA)dA
+— po—+t )f s PSI
09(9) dp o (02 —2%)
26 2(1—2) d 1—v
J.L(k)dk%-— v —+ ——
dp p
1 AM(N) dA
2 231/2° p>1
o (p°—2%)
(3.1034)

In the case where both i, and &, are specified within the loaded circle, equations
(3.102z and b) are coupled integral equations for L(A) and M(\). They have
been reduced to a single integral equation by Abramian ez al. (1966) and Spence

(1968), from which L(X), M(\) and hence p(p) and g(p) can be found.

A problem of this type arises when a rigid flat-ended cylindrical punch of
radius a is pressed normally in contact with an elastic half-space under condi-
tions in which the flat face of the punch adheres to the surface, This is the
axially symmetrical analogue of the two-dimensional rigid punch discussed in
§2.8(b). The punch indents the surface with a uniform displacement §. Thus
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the boundary conditions within the circle of contact, r <a, are
i, =56, u=0 (3.104)

Mossakovski (1954) and Spence (1968) solve this problem and show that the
load on the punch P is related to the indentation & by

P=4Gas In {(3— 4)/(1 — )} (3.105)

The load on the face of a frictionless punch is given by equations (3.36) and
(3.37) which, for comparison with (3.105), may be written

P=4Gas /(1 —v)

The ‘adhesive’ load is greater than the ‘frictionless’ load by an amount which
varies from 10% when v = 0, to zero when v = 0.5.

Spence (1975) has also examined the case of partial slip. During monotonic
loading the contact circle is divided into a central region of radius ¢ which does
not slip and an annulus ¢ <r < g where the surface of the half-space slips
radially inwards under the face of the punch. Turner (1979) has examined the
behaviour on unloading. As the load is reduced the inner boundary of the slip
zone r = ¢ shrinks in size with the slip there maintaining its inward direction.
At the same time a thin annulus at the periphery adheres to the punch without
slip until, when the load has decreased to about half its maximum value,
outward slip begins at r = @ and rapidly spreads across the contact surface.

The surface displacements produced by an axi-symmetric distribution of
pressure, calculated in §3 by the classical method, could equally well have
been found by substituting p(p) into equation (3.99) and then (3.102). The
surface stress could also be found directly from equations (3.103).

39 Torsional loading

In this section we examine tangential tractions which act in a circum-
ferential direction, that is perpendicular to the radius drawn from the origin.
Such tractions induce a state of torsion in the half-space.

{a) Circular region
For the circular region shown in Fig. 3.7 we shall assume that the
magnitude of the traction q(r) is a function of r only. Thus

qx =—q(r) sin 0 = —q()n/t (3.1062)
gy =q(r) cos 8 = q(t)§/r (3.106b)

The expressions for the displacements u,, u,, and u, can be written in the form
of equations (3.7), where H = 0 and F and G are given by

F=—J<Sf(%[)nln(p+z)dédn (3.1072)
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and
f f@gln (p +2) dk dn (3.107b)

In this case, from the reciprocal nature of F and G with respect to the coordinates,
it follows that 8G/dy = —0dF/dx, so that the expressions for the displacements
on the surface reduce to

a= O S L IO (3.1084)
u — — _— .
*T0nG 9z 2nG J K

1 2 rsq(r)
By= —— — —Edsd 3.108b
“YTomG 32 216 f £dsdg ( )
i,=0 (3.108¢)

If we consider the displacement of the point B(x, 0), as shown in Fig, 3.7, then
7/t = sin 6 and it is apparent that the surface integral in (3.108a) vanishes.
So we are left with the circumferential component i1y, as the only non-zero
displacement, which was to be expected in a purely torsional deformation.
Now comnsider the traction
q()=qor@—r*)"'?, r<a (3.109)
Substituting in (3.1085) for the surface displacement

27
y_2 GJ f (@* —x* — 2xs cos ¢ — 52)"V2(x + 5 cos ¢) ds do
m

The integral is of the form met previously and gives

Uy = mqox/4G
Fig. 3.7
Y
q(n B
)
qx C
a 13 ¢
[ ¢




Point loading of an elastic half-space 82

in view of the circular symmetry we can write

ug = nqot/4G
° _q°/ (3.110)
u,=u,=0
Thus the traction (3.109) produces a rigid rotation of the loaded circle through
an angle 8 = 7qo/4G. The traction gives rise to a resultant twisting moment

a
M, =f q(r)2nr dr
0

= 4madq,y/3 (3.111)

Hence equation (3.109) gives the traction acting on the surface of a flat-ended
cylindrical punch which adheres to the surface of a half-space when given
a twist about its axis. Since the normal displacements u, due to the twist are
zero, the pressure distribution on the face of the punch is not influenced by
the twist. This is in contrast to the behaviour of a punch which is given a uni-
axial tangential displacement, where we saw (in §7) that the normal pressure
and tangential tractions are not independent.

Hetenyi & McDonald (1958) have considered the distribution of traction

a(ry=Tp=qo(1—r*/a®)'?, r<a (3.112)
Expressions have been found for ug, 7,9 and 7,9 and values of the stress com-

ponents 7,4 (r, z) have been tabulated. The maximum value is 0.73g, on the
surface atr = a.

(b) Elliptical region

We turn now to a loaded region of elliptical shape in order to find the
distribution of traction which will again result in a rigid rotation of the loaded
ellipse. In this case there is no rotational symmetry and we tentatively put

4, =—qoy {1 —(x/a)* — (y/b)*} "2 (3.113a)

and
= qox {1 — (x/a)* = (y/b)’} " (3.113b)

These expressions are substituted in equations (3.2) to obtain the potential
functions F; and G,, which in turn are substituted in (3.7) to obtain the tangen-
tial displacements of a general surface point (x, y). Performing the integrations
in the usual way Mindlin (1949) showed that the displacements correspond to
a rigid rotation of the elliptical region through a small angle §i.e. i, = —fy
and i), = fx, provided that
GB B—2v(1 —e?)C
22  BD—uCE

do= (3.114a)
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and
, _GB D—2C

qo = % BD —»CE (3.114b)
where D(e), B(e) and C(e) can be expressed in terms of the standard elliptic
integrals E(e) and K(e) and e = (1 —a?/b?)'/? is the eccentricity of the ellipse,
viz.:

D = (K —E)/e*

B={E—(1—¢€*)K}/e?

C={(2—e*)K—2E}/e*
The twisting moment M, is given by

E —4v(1 —&*)C

M= 3G ————— 3.115
z 3 BD — vCE ( )
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Normal contact of elastic solids: Hertz theoryt

4.1 Geometry of smooth, non-conforming surfaces in contact

When two non-conforming solids are brought into contact they touch
initially at a single point or along a line. Under the action of the slightest load
they deform in the vicinity of their point of first contact so that they touch
over an area which is finite though small compared with the dimensions of
the two bodies. A theory of contact is required to predict the shape of this
area of contact and how it grows in size with increasing load; the magnitude
and distribution of surface tractions, normal and possibly tangential, transmitted
across the interface. Finally it should enable the components of deformation
and stress in both bodies to be calculated in the vicinity of the contact region.

Before the problem in elasticity can be formulated, a description of the

geometry of the contacting surfaces is necessary. In Chapter 1 we agreed to
take the point of first contact as the origin of a rectangular coordinate system
in which the x-y plane is the common tangent plane to the two surfaces and
the z-axis lies along the common normal directed positively into the lower solid
(see Fig. 1.1). Each surface is considered to be topographically smooth on both
micro and macro scale. On the micro scale this implies the absence or disregard
of small surface irregularities which would lead to discontinuous contact or
highly local variations in contact pressure. On the macro scale the profiles of
the surfaces are continuous up to their second derivative in the contact region.
Thus we may express the profile of each surface in the region close to the
origin approximately by an expression of the form

2y =A1x2+ B y*+ Cixy + ... (4.1)
where higher order terms in x and y are neglected. By choosing the orientation
of the x and y axes, x; and y|, so that the term in xy vanishes, (4.1) may be

written:
1 A summary of Hertz elastic contact stress formulae is given in Appendix 3, p. 427,
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L + Lz (4.20)
1= -, X N .24
2R, 2R,

where R} and R} are the principal radii of curvature of the surface at the origin.
They are the maximum and minimum values of the radius of curvature of all
possible cross-sections of the profile. If a cross-sectional plane of symmetry
exists one principal radius lies in that plane. A similar expression may be written
for the second surface:

1 1
Za=—{—Xx 2+ - 2) 4‘2b
2 (212; > oRY 2 (4.26)

The separation between the two surfaces is then given by h = z; —z,. We now

transpose equation (4.1) and its counterpart to a common set of axes x and
y, whereby

h=Ax* + By* + Cxy
By a suitable choice of axes we can make C zero, hence

— A2 2 _ _1_ 2y 1 2
h=Ax*+ By —2R'x +2R"y 4.3)
where 4 and B are positive constants and R’ and R"” are defined as the principal
relative radii of curvature. If the axes of principal curvature of each surface,
i.e. the x; axis and the x, axis, are inclined to each other by an angle «, then
it is shown in Appendix 2 that

(4 + B) 1(1+1)—l(1+1+1+1) (4.4)
-2 RI Rn 2 1211 R,1, Ryz Ryz; .

11N\ (1 1Y
|B—Al=%{(—,—7) H oo —or
Ry Ry R2 R

1 1 1 1 172
+2(—,—T)(~—,—~7)cos2a} (4.5)
R, R}J\R, R}

We introduce an equivalent radius R, defined by

Re — (R’R”)I/Z — %(AB)—I/Z
In this description of the initial separation between the two surfaces in terms
of their principal radii of curvature we have taken a convex surface to have
a positive radius. Equations (4.4) and (4.5). apply equally to concave or saddle-
shaped surfaces by ascribing a negative sign to the concave curvatures,

It is evident from equation (4.3) that contours of constant gap 4 between
the undeformed surfaces are ellipses the length of whose axes are in the ratio

and
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(B/A)Y? = (R'/R")"?. Such elliptical contours are displayed by the inter-
ference fringes between two cylindrical lenses, each of radius R, with their axes
inclined at 45°, shown in Fig. 4.1(z). In this example R} = R3 =R;R| =R; =
oo; o = 45°, for which equations (4.4) and (4.5) give 4 + B = 1/R and
B—A=1A/(2QR,ie. 4 =(1—1//2)/2R and B = (1 + 17/2)/2R. The
relative radii of curvature are thus: R' = 1/24 = 3.42R and R" = 1/2B =
0.585R. The equivalent radius R, = (R'R")!? = \/(2)R and (R//R")}? =

Fig. 4.1, Interference fringes at the contact of two equal cylindrical
lenses with their axes inclined at 45°: (@) unloaded, () loaded.




Geometry of surfaces in contact 87

(B/A)"'* = 2.41. This is the ratio of the major to minor axes of the contours
of constant separation shown in Fig. 4.1(a).

We can now say more precisely what we mean by non-conforming surfaces:
the relative curvatures 1/R’ and 1/R” must be sufficiently large for the terms
Ax? and By? on the right-hand side of equation (4.3) to be large compared
with the higher order terms which have been neglected. The question of
conforming surfaces is considered in §5.3.

A normal compressive load is now applied to the two solids and the point
of contact spreads into an area. If the two bodies are solids of revolution, then
Ry =R{=R,;and R, =R, =R,,whereupon4 = B=1(1/R; + 1/R,).

Thus contours of constant separation between the surfaces before loading

are circles centred at 0. After loading, it is evident from the circular symmetry
that the contact area will also be circular. Two cylindrical bodies of radii R,
and R, in contact with their axes parallel to the y-axis have R] = Ry, R| = oo,
R,=R,,R;=c0and a= 0, so that 4 = $(1/R, + 1/R,), B = 0. Contours of
constant separation are straight lines paralle] to the y-axis and, when loaded,
the surfaces will make contact over a narrow strip parallel to the y-axis. In the
case of general profiles it follows from equation (4.3) that contours of constant
separation are ellipses in plan. We might expect, therefore, that under load the
contact surface would be elliptical in shape. It will be shown in due course that
this is in fact so. A special case arises when two equal cylinders both of radius
R are in contact with their axes perpendicular. Here R} =R, R} =,R, =R,
R; =90, a=1/2, from which 4 = B = 1R. In this case the contours of constant
separation are circles and identical to those due to a sphere of the same radius
R in contact with a plane surface (R; = R} = ).

We shall now consider the deformation as a normal load P is applied. Two
solids of general shape (but chosen convex for convenience) are shown in cross-
section after deformation in Fig. 4.2. Before deformation the separation between
two corresponding surface points S;(x, ¥, z;) and S, (x, y, z,) is given by equation
(4.3). From the symmetry of this expression about O the contact region must
extend an equal distance on either side of 0. During the compression distant
points in the two bodies 77 and T, move towards O, parallel to the z-axis, by
displacements &, and &, respectively. If the solids did not deform their profiles
would overlap as shown by the dotted lines in Fig. 4.2. Due to the contact
pressure the surface of each body is displaced parallel to Oz by an amount
5 and &1, (measured positive into each body) relative to the distant points
T, and T,. If, after deformation, the points S; and S, are coincident within the
contact surface then

L?zl+l,_lz2+h=61+62 (4.6)
Writing § = §; + §, and making use of (4.3) we obtain an expression for the
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elastic displacements:

fi + i, =8 —Ax*— By? 4.7)
where x and y are the common coordinates of Sy and S, projected onto the
x-y plane. If S; and S, lie outside the contact area so that they do riot touch
it follows that

i, +il,, > 8§ — Ax*— By? (4.8)

To solve the problem, it is necessary to find the distribution of pressure trans-

mitted between the two bodies at their surface of contact, such that the result-

ing elastic displacements normal to that surface satisfy equation (4.7) within
the contact area and equation (4.8) outside it.

Fig. 4.2.
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Before proceeding to examine the problem in elasticity, however, it is
instructive to see how the deformations and stresses grow as the load is applied
on the basis of elementary dimensional reasoning. For simplicity we shall
restrict the discussion to (@) solids of revolution in which the contact area is
a circle of radius a and (b) two-dimensional bodies in which the contact area
is an infinite strip of width 2a,

We note that in Fig. 4.2, 8; = 1,1(0) and 8, = i,,(0), so that equation (4.6)
can be written in non-dimensional form

{an(m _*@} N {12_(0) ()

a a

}: 3(1/R + 1/R)x%/a  (4.9)
a a

Putting x = @ and writing #,(0) — u,(a) = d, the ‘deformation’ within the
contact zone, (4.9) becomes

d dy afl 1
a a 2 Rl R2

Provided that the deformation is small, i.e. d < a, the state of strain in each
solid is characterised by the ratio d/a. Now the magnitude of the strain will be
proportional to the contact pressure divided by the elastic modulus; therefore,
if p,, is the average contact pressure acting mutually on each solid, (4.10)
becomest

Pm/E1+ pm/E> < a(1/Ry + 1/R;)
ie.
a(1/Ry + 1/R;)
= 1/E, + 1/E,

Thus, for a given geometry and materials, the contact pressure and the associ-
ated stresses increase in direct proportion to the linear dimension of the contact

Pm 4.11)

area. To relate the growth of the contact to the load, two and three-dimensional
contacts must be examined separately.

(@) In the contact of cylinders, the load per unit axial length P = 2ap , ,
whence from (4.11)

a < {P(1/Ey + 1/E3)/(1/Ry + 1/R )} (4.12)
and
Pm <{P(1/R; + 1/R,)/(1/Ey + 1/Ey)}Y? (4.13)

1 It transpires that the ‘plane-strain modulus’ £/(1 — v?) is the correct elastic
modulus to use in contact problems, but Young’s modulus £ is used here to
retain the simplicity of the argument.
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from which we see that the contact width and contact pressure increase as the
square root of the applied load.

() In the contact of spheres, or other solids of revolution, the compressive
load P = na*p,, . Hence from (4.11)

a = {P(1/Ey+ 1/Ey)/(1/Ry + 1/Ry)}7 (4.14)
and
Pm < {P(1/Ry+ 1R, (1/E + 1/E,)*}7° (4.15)
In this case the radius of the contact circle and the contact pressure increase as
the cube root of the load.
In the case of three-dimensional contact the compressions of each solid §,

and §, are proportional to the local indentations d, and d,, hence the approach
of distant points

) =61+52ad1+d2
« {P?(1/Ey+ 1/E;)(1/R + 1R} (4.16)

The approach of two bodies due to elastic compression in the contact region
is thus proportional to (load)?3,
In the case of two-dimensional contact the displacements §, and §, are not
proportional to d, and d, but depend upon the arbitrarily chosen datum for
elastic displacements. An expression similar to (4.16) cannot be found in this case.
We have shown how the contact area, stress and deformation might be expected
to grow with increasing load and have also found the influence of curvature and
elastic moduli by simple dimensional reasoning. To obtain absolute values for
these quantities we must turn to the theory of elasticity.

42 Hertz theory of elastic contact

The first satisfactory analysis of the stresses at the contact of two
elastic solids is due to Hertz (18824). He was studying Newton’s optical inter-
ference fringes in the gap between two glass lenses and was concerned at the
possible influence of elastic deformation of the surfaces of the lenses due to the
contact pressure between them, His theory, worked out during the Christmas
vacation 1880 at the age of twenty-three, aroused considerable interest when it
was first published and has stood the test of time. In addition to static loading
he also investigated the quasi-static impacts of spheres (see §11.4). Hertz (1882b)
also attempted to use his theory to give a precise definition of hardness of a solid
in terms of the contact pressure to initiate plastic yield in the solid by pressing
a harder body into contact with it. This definition has proved unsatisfactory
because of the difficulty of detecting the point of first yield under the action
of contact stress. A satisfactory theory of hardness had to wait for the develop-
ment of the theory of plasticity. This question is considered in Chapter 6.
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Hertz formulated the conditions expressed by equations (4.7) and (4.8)
which must be satisfied by the normal displacements on the surface of the
solids. He first made the hypothesis that the contact area is, in general, elliptical,
guided no doubt by his observations of interference fringes such as those shown
in Fig. 4.1(b). He then introduced the simplification that, for the purpose of
calculating the local deformations, each body can be regarded as an elastic
half-space loaded over a small elliptical region of its plane surface. By this
simplification, generally followed in contact stress theory, the highly concen-
trated contact stresses are treated separately from the general distribution of
stress in the two bodies which arises from their shape and the way in which they
are supported. In addition, the well developed methods for solving boundary-
value problems for the elastic half-space are available for the solution of contact
problems. In order for this simplification to be justifiable two conditions must
be satisfied: the significant dimensions of the contact area must be small com-
pared () with the dimensions of each body and (b) with the relative radii of
curvature of the surfaces. The first condition is obviously necessary to ensure
that the stress field calculated on the basis of a solid which is infinite in extent
is not seriously influenced by the proximity of its boundaries to the highly
stressed region. The second condition is necessary to ensure firstly that the
surfaces just outside the contact region approximate roughly to the plane
surface of a half-space, and secondly that the strains in the contact region are
sufficiently small to lie within the scope of the linear theory of elasticity.
Metallic solids loaded within their elastic limit inevitably comply with this
latter restriction. However, caution must be used in applying the results of
the theory to low modulus materials like rubber where it is easy to produce
deformations which exceed the restriction to small strains.

Finally, the surfaces are assumed to be frictionless so that only a normal
pressure is transmitted between them. Although physically the contact pressure
must act perpendicular to the interface which will not necessarily be planar,
the linear theory of elasticity does not account for changes in the boundary
forces arising from the deformation they produce (with certain special excep-
tions). Hence, in view of the idealisation of each body as a half-space with
a plane surface, normal tractions at the interface are taken to act parallel to the
z-axis and tangential tractions to act in the x-y plane.

Denoting the significant dimension of the contact area by a, the relative
radius of curvature by R, the significant radii of each body by R, and R, and
the significant dimensions of the bodies both laterally and in depth by /, we may
summarise the assumptions made in the Hertz theory as follows:

(i) The surfaces are continuous and non-conforming: ¢ € R;
(i) The strains are small: 2 € R;
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(iii) Each solid can be considered as an elastic half-space: a €Ry,,a </,
(iv) The surfaces are frictionless: g, = g, = 0.

The problem in elasticity can now be stated: the distribution of mutual
pressure p(x, y) acting over an area S on the surface of two elastic half-spaces
is required which will produce normal displacements of the surfaces ii,; and
i1, satisfying equation (4.7) within S and (4.8) outside it.

(a) Solids of revolution

We will consider first the simpler case of solids of revolution
(R} =R} =Ry;R, =R, =R,). The contact area will be circular, having a radius
a, say. From equations (4.4) and (4.5) it is clear that 4 = B = (1/R, + 1/R,),
so that the boundary condition for displacements within the contact expressed
in (4.7) can be written

7221_’_7}22"_‘8“(1/2R)r2 (4-17)
where (1/R) = (1/R; + 1/R;) is the relative curvature.
A distribution of pressure which gives rise to displacements which satisfy

(4.17) has been found in §3.4, where the pressure distribution proposed by
Hertz (equation (3.39))
p=po{l —(r/a)*}'"
was shown to give normal displacements (equation (3.41a))
_ 1=yt mp,

i — (2*—r*), r<a
z E 4d( ) =

The pressure acting on the second body is equal to that on the first, so that by
writing

1 _l_V12 +1~“V22

E* E E,
and substituting the expressions for i, and i1,, into equation (4.17) we get

Do

4E@a"’~—r"’)=8—(l/2R)r2 (4.18)
from which the radius of the contact circle is given by

a=mpoR[2E* (4.19)
and the mutual approach of distant points in the two solids is given by

8 = mapy[2E* (4.20)

The total load compressing the solids is related to the pressure by

a
P= f p(r)2ar dr = 2poma® (4.21)
0
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Hence the maximum pressure po is 3/2 times the mean pressure p,, . In a practical
problem, it is usually the total load which is specified, so that it is convenient to
use (4.21) in combination with (4.19) and (4.20) to write

3PR 1/3
a=(&;) | (4.22)
aZ 9P2 1/3
) =E = (W) (4.23)
3P 6PE*2\1/3 T U
p0:2_7ra—2=(7r3R2 ) T (4.24)

These expressions have the same form as (4.14), (4.15) and (4.16) which were
obtained by dimensional reasoning. However they also provide absolute values
for the contact size, compression and maximum pressure.

Before this solution to the problem can be accepted, we must ask whether
(4.17) is satisfied uniquely by the assumed pressure distribution and also check
whether condition (4.8) is satisfied to ensure that the two surfaces do not
touch or interfere outside the loaded circle. By substituting equation (3.422)
for the normal displacement (# > @) into equation (4.8) and making use of
(4.19), it may be verified that the Hertz distribution of pressure does not lead
to contact outside the circle r = a,

On the question of uniqueness, we note from §3.4 that a pressure distribution
of the form (equation (3.34))

p=po{l—(r/a)’}7'"
produces a uniform normal displacement within the loaded circle. Thus such
a pressure could be added to or subtracted from the Hertz pressure while still
satisfying the condition for normal displacements given by (4.17). However,
this pressure distribution also gives rise to an infinite gradient of the surface
immediately outside the loaded circle in the manner of a rigid cylindrical punch.
Clearly two elastic bodies having smooth continuous profiles could not develop
a pressure distribution of this form without interference outside the circle
r = a. On the other hand, if such a pressure distribution were subtracted from
the Hertz pressure, the normal traction just inside the loaded circle would be
tensile and of infinite magnitude. In the absence of adhesion between the two
surfaces, they cannot sustain tension, so that both positive and negative
tractions of the form given above are excluded. No other distribution of normal
traction produces displacements which satisfy (4.17) so that we conclude that
the Hertz pressure distribution is the unique solution to the problem.

The stresses within the two solids due to this pressure distribution have
been found in §3.4, and are shown in Fig. 4.3. At the surface, within the
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contact area, the stress components are given by equation (3.43); they are all
compressive except at the very edge of contact where the radial stress is tensile
having a maximum value (1 — 2v)p,/3. This is the greatest tensile stress any-
where and it is held responsible for the ring cracks which are observed to form
when brittle materials like glass are pressed into contact. At the centre the

radial stress is compressive and of value (1 + 2v)po/2. Thus for an incompressible
material (v = 0.5) the stress at the origin is hydrostatic. Outside the contact

area the radial and circumferential stresses are of equal magnitude and are

tensile and compressive respectively (equation (3.44)).

Fig. 4.3. Stress distributions at the surface and along the axis of
symmetry caused by (left) uniform pressure and (right) Hertz pressure
acting on a circular area radius a.
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Expressions for the stresses beneath the surface along the z-axis are given
in equations (3.45). They are principal stresses and the principal shear stress
(r, = 3 (principal stress difference)) has a value of approximately 0.31p, at
a depth of 0.48a (for v = 0.3). This is the maximum shear stress in the field,
exceeding the shear stress at the origin = |0, — 0,| = 0.10p,, and also the
shear stress in the surface at the edge of the contact = 3{0, — gy | = 0.13p,.
Hence plastic yielding would be expected to initiate beneath the surface. This
question is considered in detail in the next chapter.

(b ) General profiles

In the general case, where the separation is given by equation (4.3),
the shape of the contact area is not known with certainty in advance. However
we assume tentatively that S is elliptical in shape, having semi-axes 2 and .
Hertz recognised that the problem in elasticity is analogous to one of electro-
static potential. He noted that a charge, whose intensity over an elliptical region
on the surface of a conductor varies as the ordinate of a semi-ellipsoid, gives
rise to a variation in potential throughout that surface which is parabolic. By
analogy, the pressure distribution given by equation (3.58)

p=po{l—(x/a)* —(y/b)*}'?
produces displacements within the ellipse given by equation (3.61):

1—»?
i, = (L —Mx* —Ny?)
wE
Thus for both bodies,
ﬁzl + Zjlz2 = (L — Mx? _Nyz)/ﬂE* (4.25)

which satisfies the condition (4.7): i1, + i1,, = 8 — Ax? — By? provided that
(from equations (3.62))

A = M[nE* = (po/E*)(b/e*a®) {K(e) — E(e)} (4.26a)
B = NjnE* = (po/E*)(b/a%>) {(a*/b?E(e) — K(e)} (4.26b)
8 = L/nE* = (po/E*)bK(e) (4.26¢)

where E(e) and K(e) are complete elliptic integrals of argument e = (1 —
b%/a*)V?, b <a. The pressure distribution is semi-ellipsoidal and, from the
known volume of an ellipsoid, we conclude that the total load P is given by

P =(2/3)ponab (4.27)

from which the average pressure p, = (2/3)po.
To find the shape and size of the ellipse of contact, we write

B_ ( _R_'>: (a/b)*E(e) — K(e)
4 R K@ ~E(@)

(4.28)



Normal contact of elastic solids - Hertz theory 96

and
(4B)"* = 2(1/R R")" = 1/2R,

Po
E* 22

[{(a/0)*E(e) — K(e)} {K(e) — E(e)}]'" (4.29)

We now write ¢ = (ab)!/2 and substitute for p, from (4.27) into (4.29) to

obtain
3PR,
6’3 E(ab)3/2 (E;)__ ( / )3/2
x [{(a/b)*E(e) — K(e)} {K(e) — E(e)}]'"?
ie.
3PRe 1/3
c=(ab)'?= ( :U_E:) Fi(e) (4.30)

The compression is found from equations (4.26¢) and (4.27):

5=

bK(e
2nabE* ©

9P2 1/32 b 1/2
B (16E*2R ) ;r(;) (R} K@)

9P2 1/3
= (16E*2Re) Fy(e) (4.31)

and the maximum pressure is given by

3P ( *2)1/3
= e E(e)}? 4.32
po=s—=55z) 1R (4.32)

The eccentricity of the contact ellipse, which is independent of the load and
depends only on the ratio of the relative curvatures (R’/R"), is given by equation
(4.28). It is apparent from equation (4.3) that, before deformation, contours
of constant separation 4 are ellipses in which (b/a) = (4/B)!’2 = (R"/R")'/2.
Equation (4.28) has been used to plot the variation of (b/a)(B/A)'/* as a func-
tion of (B/4)"/? in Fig. 4.4. If the contact ellipse had the same shape as con-
tours of equal separation when the surfaces just touch, (b/a)(B/A)*'? would
always have the value 1.0. It may be seen from the figure that (b/a)(B/A)""*
decreases from unity as the ratio of relative curvatures (R'/R") increases. Thus
the contact ellipse is somewhat more slender than the ellipse of constant separa-
tion. The broken line in Fig. 4.4 shows that (b/a)(B/A)"'* ~ (B/A)™"'%, i.e.

bja~ (B/A)¥? = (R'/R")>" (4.33)

We have introduced an equivalent contact radius ¢ (= (ab)'/?) and an equivalent
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relative curvature R, (= (R'R")'/?) and obtained expressions for ¢, the maxi-
mum contact pressure po and the compression § in equations (4.30), (4.31) and
(4.32). Comparison with the corresponding equations (4.22), (4.23) and (4.24)
for solids of revolution shows that the first term is the same in each case; the
second term may be regarded as a ‘correction factor’ to allow for the eccentricity
of the ellipse. These correction factors — F(e), {F(e)} * and Fye) — are also

plotted against (R/R")'/? in Fig. 4.4; they depart rather slowly from unity with
increasing ellipticity.

As an example, consider the contact of the cylinders, each of radius R, with
their axes inclined at 45°, illustrated by the interference fringes shown in Fig.
4.1(b). As shown in §4.1 the ratio of relative curvatures (R'/R")"/2 = (B/A)'* =
2.41 and the equivalent radius R, = (R'R")"? == v/(2)R.Under load, the ratio
of major to minor axis a/b = 3.18 from the curve in Fig. 4.4 or ~ 3.25 from
equation (4.33). Also from Fig. 4.4, F ~ F, = 0.95 and £* ~ 1.08 from
which the contact size ¢ (= (ab)'/?), the compression 8 and the contact pressure
Do can be found using equations (4.30), (4.31) and (4.32) respectively. Even

Fig. 4.4, Contact of bodies with general profiles. The shape of the
ellipse b/a and the functions F, E and F, (= £7%) in terms of the
ratio (R'/R") of relative curvatures, for use in equations (4.30), (4.31)

and (4.32).
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though the ellipse of contact has a3:1 ratio of major to minor axes, taking
F,=F, =Fy=1.0,i.e. using the formulae for circular contact with an equiva-
lent radius R, leads to overestimating the contact size ¢ and the compression
8 by only 5% and to underestimating the contact pressure py by 8%.

For ease of numerical computation various authors, e.g. Dyson (1965) and
Brewe & Hamrock (1977) have produced approximate algebraic expressions in
terms of the ratio (4/B) to replace the elliptic integrals in equations (4.30),
(4.31) and (4.32). Tabular data have been published by Cooper (1969).

[t has been shown that a semi-ellipsoidal pressure distribution acting over
an elliptical region having the dimensions defined above satisfies the boundary
conditions (4.7) within the ellipse. To confirm the hypothesis that the contact
area is in fact elliptical it is necessary that condition (4.8) also be satisfied:
that there should be no contact outside the prescribed ellipse. From equation
(3.59), the displacements on the surface outside the loaded ellipse are given by

1 —v? qab o (1 x? y? ) dw
u,= — — —
z E 2 pof}\l a+w bEH+w/{@®+w)B*+wwp’?

where A, is the positive root of equation (3.53). We write [, =[]’ = [I]g —
[71%:. In the region in question: z = 0, x2/a® + y?/b* > 1, from which it appears
that [/]} is negative. But the pressure distribution and contact dimensions have
been chosen such that

ab - ) )
ZF Po [I]o =6 —Ax —By .
Hence in the region outside the contact
fiy + liyy >8 — Ax? — By?
i.e. condition (4.8) is satisfied and the assumption of an elliptical contact area is
justified.

Expressions for the stresses within the solids are given by equations (3.64)-
(3.69). The general form of the stress field is similar to that in which the contact
region is circular. If 2 and b are taken in the x and y directions respectively with
a > b, at the centre of the contact surface

0, = —po{2v+ (1 —2)b/(a + b)} (4.340)
oy =—po{2v+ (1 — w)af(a + b)} (4.34b)
At the ends of the major and minor axes, which coincide with the edge of the

contact region, there is equal tension and compression in the radial and circum-
ferential directions respectively, thus at x = 4,y = 0,

b (1
0y =—0,=po(1— ) o {; tanh™! e - 1: (4.35q)
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Table 4.1

b/a 0 0.2 0.4 0.6 0.8 1.0
z/b 0.785 0.745 0.665 0.590 0.530 0.480
(T1)max/Po 0.300 0.322 0.325 0.323 0.317 0.310

and atx =0,y = 1b,

b b ea
0y = —0x =po(1—20) — {1 — —tan’! (—)} (4.35b)
ae ae b

The maximum shear stress occurs on the z-axis at a point beneath the surface
whose depth depends upon the eccentricity of the ellipse as given in Table 4.1.
Numerical values of the stresses along the z-axis have been evaluated by Thomas
& Hoersch (1930) for v = 0.25 and by Lundberg & Sjovall (1958).

The simplest experimental check on the validity of the Hertz theory is to
measure the growth in size of the contact ellipse with load which, by (4.30), is
a cube-root relationship. Hertz performed this experiment using glass lenses
coated with lampblack. A thorough experimental investigation has been carried
out by Fessler & Ollerton (1957) in which the principal shear stresses on the plane
of symmetry, given by equations (3.64) and (3.69) have been measured using
the frozen stress method of photo-elasticity. The ratio of the major axis of the
contact ellipse @ to the minimum radius of curvature R was varied from 0.05
to 0.3 with araldite models having different combinations of positive and
negative curvature. At the smallest values of /R the measured contact size
was somewhat greater than the theory predicts. This discrepancy is commonly
observed at light loads and is most likely due to the topographical roughness of
the experimental surfaces (see Chapter 13). At high loads there was good agree-
ment with the theoretical predictions of both contact area and internal stress
up to the maximum value of a/R used (= 0.3). This reassuring conclusion is
rather surprising since this value of (a/R) corresponds to strains in the contact
region rising to about 10%.

(c) Two-dimensional contact of cylindrical bodies

When two cylindrical bodies with their axes both lying parallel to the
y-axis in our coordinate system are pressed in contact by a force P per unit
length, the problem becomes a two-dimensional one. They make contact over
a long strip of width 2z lying parallel to the y-axis. Hertz considered this case
as the limit of an elliptical contact when b was allowed to become large com-
pared with 2. An alternative approach is to recognise the two-dimensional
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nature of the problem from the outset and to make use of the results developed
in Chapter 2 for line loading of a half-space.

Equation (4.3) for the separation between corresponding points on the
unloaded surfaces of the cylinders becomes

h=21+22=Ax2:%(1/R1+ 1/R2)X2=%(1/R)x2 (436)

where the relative curvature 1/R = 1/R; + 1/R,. For points lying within the
contact area after loading, equation (4.7) becomes

g+t il =8—Ax*=86—1(1/R)x? (4.37)
whilst for points outside the contact region
fiy iz >8 —3(1/R)x? (4.38)

We are going to use Hertz’ approximation that the displacements ii,; and 1,5 can
be obtained by regarding each body as an elastic half-space, but a difficulty
arises here which is absent in the three-dimensional cases discussed previously,
We saw in Chapter 2 that the value of the displacement of a point in an elastic
half-space loaded two-dimensionally could not be expressed relative to a datum
located at infinity, in view of the fact that the displacements decrease with
distance r from the loaded zone as In . Thusii,; and it,, can only be defined
relative to an arbitrarily chosen datum. The approach of distant points in the
two cylinders, denoted by ¢ in equation (4.37), can take any value depending
upon the choice of datum. In physical terms this means that the approach
& cannot be found by consideration of the local contact stresses alone; it is
also necessary to consider the stress distribution within the bulk of each body.
This is done for circular cylinders in §5.6.

For the present purpose of finding the local contact stresses the difficulty
is avoided by differentiating (4.37) to obtain a relation for the surface gradients.
Thus

% + 0itz

ox dx
Referring to Chapter 2, we see that the surface gradient due to a pressure p(x)
acting on the strip —a < x < a is given by equation (2.25b). The pressure on
each surface is the same, so that

= —(1/R)x (4.39)

ol it 2 e s
zl+ _2_2 - p() ds
dx ox nE* ) _,x—s

Substituting in equation (4.39)

ds=—x 4.40
R (4.40)
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This is an integral equation for the unknown pressure p(x) of the type (2.39)
in which the right-hand side g(x) is a polynomial in x of first order. The solution
of this type of equation is discussed in §2.7. If, in equation (2.45), we put
n = 1and write 7E(n + 1)B/2(1 — v*) = nE*/2R, the required distribution
of pressure is given by equation (2.48) in which, by (2.47),

I,=1=n(x*/a* %)
Thus

nE* x*—ad*2 P

p(x)=——2*§ m(a® — x2)72 +7r(a2——x2)1/2 (4.41)

This expression for the pressure is not uniquely defined until the semi-contact-

width a is related to the load P. First we note that the pressure must be positive
throughout the contact for which

P> na*E*[4R (4.42)

If P exceeds the value given by the right-hand side of (4.42) then the pressure
rises to an infinite value at x = +a. The profile of an elastic half-space which is
loaded by a pressure distribution of the form po(1 —x?/2*)™"2 is discussed in
82.7(a). The surface gradient just outside the loaded region is infinite (see Fig.
2.12). Such a deformed profile is clearly inconsistent with the condition of our
present problem, expressed by equation (4.38), that contact should not occur
outside the loaded area. We must conclude therefore that

P = 1a’E*|4R
ie.
4PR
a* = e (4.43)
i
whereupon
2P
pe)=— (a® —x*)!7 (4.44)

which falls to zero at the edge of the contact.
The maximum pressure
2P 4 (PE*)” 2

Do=—"="Pm*™=
ma W

7R

where p,, is the mean pressure,

The stresses within the two solids can now be found by substituting the
pressure distribution (4.44) into equation (2.23). At the contact interface
0x = 0, = —p(x); outside the contact region all the stress components at the

(4.45)
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surface are zero. Along the z-axis the integration is straightforward giving

O = —-%9 {@ + 22*)(@* + 2%)™V2 — 2z} | (4.460)
R (4.46b)
These are principal stresses so that the principal shear stress is given by
T, = —% {z—z%(a" + %)%
from which
(T)max = 0.30p,, atz=0.78z (4.47)

These stresses are all independent of Poisson’s ratio although, for plane strain,
the third principal stress g, = (0, + 0;). The variations of o, 0, and 7, with
depth below the surface given by equations (4.46) are plotted in Fig. 4.5(a),
which may be seen to be similar to the variations of stress beneath the surface
in a circular contact (Fig. 4.3). Contours of principal shear stress 7, are plotted
in Fig. 4.5(b), which may be compared with the photo-elastic fringes shown in
Fig. 4.6(d). McEwen (1949) expresses the stresses at a general point (x, z) in
terms of m and n, defined by

m?=3[{(@® —x*+22)? + 4?22}V% + (a2 —x2 + z?)] (4.480)

Fig. 4.5. Contact of cylinders: () subsurface stresses along the axis of
symmetry, (b) contours of principal shear stress 7.
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and

n? =3[{(a* —x*+2*)* + 4?22 }V? — (a® — x? + z?)] (4.48b)
where the signs of m and » are the same as the signs of z and x respectively.
Whereupon

Po z? + n?
0x=_; {m (1+m —22} (449(1)
2 2
Do ( z:+n )
—_ =9 1 — 4.49p
7z a m? + n? ( )

Fig. 4.6. Two-dimensional photo-elastic fringe patterns (contours of
principal shear stress): (a) point load (§2.2); (b) uniform pressure
(82.5(a)); (c) rigid flat punch (§2.8); (d) contact of cylinders (§4.2(c)).
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and

2 2
po m-—2z
szz—; n(m2 +n2) (4.496‘)

Alternative expressions have been derived by Beeching & Nicholls (1948),
Poritsky (1950), Sackfield & Hills (1983a). A short table of values is given in

Appendix 4. The variation of stress with x at a constant depth z = 0.5a is
shown in Fig. 9.3.

43 Elastic foundation model

The difficulties of elastic contact stress theory arise because the displace-
ment at any point in the contact surface depends upon the distribution of
pressure throughout the whole contact. To find the pressure at any point in
the contact of solids of given profile, therefore, requires the solution of an
integral equation for the pressure, This difficulty is avoided if the solids can
be modelled by a simple Winkler elastic foundation or ‘mattress’ rather than
an elastic half-space. The model is illustrated in Fig. 4.7. The elastic foundation,
of depth h, rests on a rigid base and is compressed by a rigid indenter. The profile
of the indenter, z(x, y), is taken as the sum of the profiles of the two bodies
being modelled, i.e.

2(x,y) = 2:(x,¥) + z2(x, ) (4.50)
There is no interaction between the springs of the model, i.e. shear between
adjacent elements of the foundation is ignored. If the penetration at the origin
is denoted by &, then the normal elastic displacements of the foundation are
given by
§—z(x,y), & >z}
0, §<z

The contact pressure at any point depends only on the displacement at that

Uy (x,y) = (4.51)

Fig. 4.7

[7777777777777 777777777777



Elastic foundation model 105

point, thus

pix,y) = (K/h)u,(x, ») (4.52)

where K is the elastic modulus of the foundation.
For two bodies of curved profile having relative radii of curvature R’ and

R”,z(x,y) is given by equation (4.3) so that we can write

i, =8—(x*/2R")— (y*[2R") (4.53)
inside the contact area. Since #, = 0 outside the contact, the boundary is an
ellipse of semi-axes 2 = (26R")"'? and b = (26R")'/?. The contact pressure, by
(4.52), is

p(x,y) = (K&/m){1— (x*/a®) — (»*/b*)} (4.54)
which is paraboloidal rather than ellipsoidal as given by the Hertz theory. By
integration the total load is

P = Knab§/2h (4.55)
In the axi-symmetric case a = b = (26R)'/? and
7 (Ka\ a®
P=- (—)——— (4.56)
4\ h/ R
For the two-dimensional contact of long cylinders, by equation (4.37)
i,=8—x%2R =(a* —x*)/2R (4.57)
so that
p(x) = (K/2RR)(a*> — x?) (4.58)
and the load
p=2 (Iﬁ)f’i (4.59)
h/R

Equations (4.56) and (4.59) express the relationship between the load and the
contact width, Comparing them with the corresponding Hertz equations (4.22)
and (4.43), agreement can be obtained, if in the axi-symmetric case we choose
K/h = 1.70E*/a and in the two-dimensional case we choose K/h = 1.18E*/a.
For K to be a material constant it is necessary to maintain geometrical similarity
by increasing the depth of the foundation 4 in proportion to the contact width
a. Alternatively, thinking of 4 as fixed requires K to be reduced in inverse
proportion to a. It is a consequence of the approximate nature of the model
that the values of K required to match the Hertz equations are different for the
two configurations. However, if we take K/h = 1.35E*/a, the value of 2 under
a given load will not be in error by more than 7% for either line or point contact,
The compliance of a point contact is not so well modelled. Due to the neglect
of surface displacements outside the contact, the foundation model gives
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& = a*/2R which is half of that given by Hertz (equation (4.23)). If it were
more important in a particular application to model the compliance accurately
we should take K/i = 0.60£*/a; the contact size @ would then be too large by
a factor of /2.

The purpose of the foundation model, of course, is to provide simple approxi-
mate solutions in complex situations where half-space theory would be very
cumbersome, For example, the normal frictionless contact of bodies whose
arbitrary profiles cannot be represented adequately by their radii of curvature
at the point of first contact can be handled easily in this way (see §5.3). The
contact area is determined directly in shape and size by the profiles z(x, y) and
the penetration 6. The pressure distribution is given by (4.52) and the corres-
ponding load by straight summation of pressure: For a contact area of arbitrary
shape a representative value of @ must be chosen to determine (K/A).

The foundation model is easily adapted for tangential loading (see §8.7);
also to viscoelastic solids (see §9.4).



S

Non-Hertzian normal contact of elastic bodies

The assumptions and restrictions made in the Hertz theory of elastic contact
were outlined in the previous chapter: parabolic profiles, frictionless surfaces,
elastic half-space theory. In this chapter some problems of normal elastic
contact are considered in which we relax one or more of these restrictions.
Before looking at particular situations, however, it is instructive to examine
the stress conditions which may arise close to the edge of contact.

51 Stress conditions at the edge of contact

We have seen in Chapter 4 that, when two non-conforming elastic
bodies having continuous profiles are pressed into contact, the pressure distri-
bution between them is not determined uniquely by the profiles of the bodies
within the contact area. Two further conditions have to be satisfied: (i) that
the interface should not carry any tension and (ii) that the surfaces should not
interfere outside the contact area, These conditions eliminate terms in the
pressure distribution of the form C(1 — x%/a®)™’? which give rise to an infinite
tension or compression at the edge of the contact area (x = *a) (see equation
(4.41)). The resulting pressure distribution was found to be semi-ellipsoidal,
i.e. of the form po(1 — x2/2*)!’?, which falls to zero at x = *a.

If we now recall the stresses produced in line loading by a uniform distri-
bution of pressure (§2.5), they are everywhere finite, but the gradient of the
surface is infinite at the edge of the contact (eq. (2.306) and Fig. 2.8). This
infinite gradient of the surface is associated with the jump in pressure from zero
outside to p inside the contact. It is clear that two surfaces, initially smooth
and continuous, could not deform in this way without interference outside the
loaded area, These observations lead to an important principle: the pressure
distribution between two elastic bodies, whose profiles are continuous through
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the boundary of the contact area, falls continuously to zero at the boundary.t

The examples cited in support of this statement were for frictionless surfaces,
but it may be shown that the principle is still true if there is slipping friction at
the edge of the contact such that ¢ = up and also if friction is sufficient to
prevent slip entirely.

If one or both of the bodies has a discontinuous profile at the edge of the
contact the situation is quite different and, in general, a high stress concentra-
tion would be expected at the edge. The case of a rigid flat punch with square
corners was examined in §2.8. For a frictionless punch the pressure distribution
was of the form po(1 — x?/a*)™? which, at a small distance p from one of the
corners, may be written po(2p/a) /2. It is recognised, of course, that this
infinite stress cannot exist in reality. Firstly, the linear theory of elasticity
which gave rise to that result is only valid for small strains and, secondly, real
materials will yield plastically at a finite stress. Nevertheless, as developments
in linear elastic fracture mechanics have shown, the strength of stress singularities
calculated by linear elastic theory is capable of providing useful information about
the intensity of stress concentrations and the probable extent of plastic flow.

The conditions at the edge of the contact of a rigid punch with an elastic
half-space are influenced by friction on the face of the punch and also by the
value of Poisson’s ratio for the half-space. If friction prevents slip entirely the
pressure and traction on the face of the punch are given by equation (2.69).
Close to a corner (p = a —x < a) the pressure distribution may be written

() 2(1—v)
P (3 — 4v)
where n = (1/27) In (3 — 4»). This remarkable singularity exhibits an oscillation
in pressure at the corner of the punch (p ~ 0).

For an incompressible half-space, however, v = 0.5, 7 = 0 and the pressure
distribution reverts to that without friction. It was shown in §2.8 that, in the
absence of an adhesive, the surfaces must slip. The form of the pressure distri-
bution close to the edge of the punch may then be obtained from equation
(2.75) to give

(2ap)™'* cos {n In (2a/p)} (5.1

_ Pcos(my)

p(p) (2ap)™"*(2a/p)*" (5.2)

where tan (my) = —u(1 — 2v)/2(1 — »). When either the coefficient of friction

is zero or Poisson’s ratio is 0.5, vy = 0 and the pressure distribution reverts to
the frictionless form.

T This principle was appreciated by Boussinesq (18853).
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In the above discussion we have examined the stress concentration produced
by a rigid punch with a square corner. The question now arises: how would
that stress concentration be influenced if the punch were also elastic and the
angle at the corner were other than 90°? This question has been investigated
by Dundurs & Lee (1972) for frictionless contact, by Gdoutos & Theocaris
(1975) and Comninou (1976) for frictional contacts, and by Bogy (1971) for
no slip. They analyse the state of stress in a two-dimensional elastic wedge of
angle ¢, which has one face pressed into contact with an elastic half-space as
shown in Fig. 5.1. The half-space itself may be thought of as a second wedge
of angle 7. The variation of the stress components with p close to the apex of
the wedge may take one of the following forms:

(@) p*,if sisreal and 0 <5< 1;
(5) ot cos(n In p) or p¢Lsin (n In p), if s = £ + in is complex and
0<EL];

(c) Inp;

(d) constant (including zero);
depending upon the elastic constants of the wedge and half-space, the angle of
the wedge ¢ and the frictional conditions at the interface. Dundurs shows that
the influence of the elastic constants is governed by only two independent
variables:

a= {(1=»)/G ) — {(1 —1,)/G,} (5.32)
{(1 _Vl)/Gl} + {(1—v,)/G,}

Fig. 5.1

G,, vy

(0. )
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and

g=1 [{(1 — )G} — {(1 — 20,)/G,} ]
P LA =)/} + {1 =02)/6)
« is a measure of the difference in ‘plane strain modulus’ {(1 — »?)/E}; it varies
from —1.0 when the half-space is rigid to +1.0 when the wedge is rigid. § has
extreme values 3 when one body is rigid and the other has zero Poisson’s ratio.
If both bodies are incompressible § = 0. Some typical values of « and {8 are
given in Table 5.1 from which it may be seen that | 8] seldom exceeds 0.25.
When there is slip between the wedge and the half-space the stresses at the
apex may be of the form (@), (¢) or (d) as defined above, but complex values

of s which lead to oscillating stresses do not arise. For the pressure to be finite
at O (case (d)) it is found that

- (m+ @) cos ¢+ (um—1) sin ¢
“S —@)cos g+ (um+ 1) sin ¢

(5.30)

(5.4)

Unless the pressure actually falls to zero at O, however, the tangential stress

o in the half-space has a logarithmic singularity at O (case (¢)). This was found
to be the case with a uniform pressure as shown in equation (2.312) and Fig.
2.9.If e exceeds the right-hand side of equation (5.4) there is a power law
singularity in pressure at O with the value of s depending upon the values of

o, 3, ¢ and u. In this expression the wedge is taken to be slipping relative to the
half-space in the positive direction of x, i.e. from left to right in Fig. 5.1. For
slip in the opposite direction negative values of u should be used in equation
(5.4). The stress concentration at O is reduced by positive sliding and increased
by negative sliding. As might be expected, the stress concentration increases
with increasing wedge angle ¢. When the wedge is effectively bonded to the
half-space then the stress is always infinite at O. For larger values of |a| and

| 81, s may be complex (case (»)) and the pressure and shear traction both

Table 5.1

G, G,
Body 1 Body 2 (GPa) I (GPa) v, o B8
Rubber metal <G, 0.50 >Gy — 1.00 0
Perspex steel 0.97 0.38 80 0.30 0.97 0.19
Glass steel 22 0.25 80 0.30 0.57 0.21
Duralumin steel 28 0.32 80 0.30 0.61 0.12
Cast iron steel 45 0.25 80 0.30 0.31 0.12
Tungsten steei 300 0.22 80 0.30 —-0.54 -0.24

carbide
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oscillate close to O. For smaller values of || and | 8], s is real and a power
singularity arises (case (@)). To find the value of s in any particular case the
reader is referred to the papers cited.

By way of example we shall consider a rectangular elastic block, or an elastic
cylinder with flat ends, compressed between two half-spaces. The distributions
of pressure and frictional traction on the faces of the block or cylinder have
been found by Khadem & O’Connor (1969a, b) for (2) no slip (bonded) and
(b) no friction at the interface. Close to the edges of contact the stress condi-
tions for both the rectangular block and the cylinder can be determined by
reference to the two-dimensional wedge discussed above, with a wedge angle
¢ = 90°. If the block is rigid and the half-spaces are elastic with » = 0.3
(= 1.0; 8 = 0.286) the situation is that of a rigid punch discussed in §2.8.

In the absence of friction the pressure near the corner varies as p °* as given

by equation (2.64). Points on the interface move tangentially inwards towards
the centre of the punch, corresponding to negative slip as defined above so that,
if the motion is resisted by finite friction (1 = —0.5 say), the stress near the
corner varies as p "%, given by equation (5.2). With an infinite friction coeffi-
cient, so that all slip is prevented, s is complex and the pressure oscillates as
given by equations (2.69) and (5.1).

If now we consider the reverse situation, in which the block is elastic
(v = 0.3) and the half-spaces are rigid (o = —1, § = —0.286), in the absence
of friction the pressure on a face of the block will be uniform. Through
Poisson’s ratio it will expand laterally so that the slip at a corner is again
negative. When this slip is resisted by friction (1 = —0.5) the stress at a corner
varies as p~%*%; if slip is completely prevented it varies as p~°2°.

Finally we consider block and half-spaces of identical materials so that
a = f=0. For all frictional conditions the pressure is infinite at the edges:
without friction it varies as p~°-**; with slipping friction, taking u = —0.5,
it varies as p °**. With no slip s is again real and the pressure varies as p ™.

52 Blunt wedges and cones

The Hertz theory of contact is restricted to surfaces whose profiles
are smooth and continuous; in consequence the stresses are finite everywhere.
A rigid punch having sharp square corners, on the other hand, was shown in
§2.8 to introduce an infinite pressure at the edges of the contact. In this
section we examine the influence of a sharp discontinuity in the slope of the
profile within the contact area by reference to the contact of a wedge or cone
with plane surface. In order for the deformations to be sufficiently small to
lie within the scope of the linear theory of elasticity, the semi-angle & of the
wedge or cone must be close to 90°.
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If we take a two-dimensional wedge indenting a flat surface such that the
width of the contact strip is small compared with the size of the two solids
then we can use the elastic solutions for a half-space for both wedge and plane
surface. The deformation is shown in Fig. 5.2(@). The normal displacements
are related to the wedge profile by

iy ti,,=686—cotalx|, —a<x<a (5.5)

Fig. 5.2. Indentation by a blunt wedge: () pressure distribution;
(b) photo-elastic fringes.

f— ——

&)
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Thus
i + i1z = — (sign x) cot (5.6)
where (sign x) = +1 or —1 when x is +ve or —ve respectively. Neglecting friction,
the normal pressure acting at the interface is found by substituting in equation
(2.25b) to give
2 e p(s)

nE* J _,x—s

ds = (sign x) cot a (5.7

This is an integral equation for p(x) of the type (2.39) with the general solution
(2.41).
Now

XS

J.a ((12 _S2)1/2(Sigl’l S) dS __Ja ((12 _s2)1/2 dS J‘O ((12 _s2)1/2 dS
—a

—a X —Ss 0 X —Ss

a 1 1 a(@® —s5*)2s ds
:J.O ((12—5’2)1/2{*———} ds=2J.0 (__;.2__—3—2._.

x—s x+s s

2 2451/2
= 2(1._((12 ,_s2),1/2 1n{ziz2 :zz;jz } (5.8)
Substituting in (2.41) and using (2.42), we get
E* cot 2a a+ (@ —x*)'"?
p) = 27 [(a2 —x2)2 h n{a——(?—_ﬁw}]
P
7T((12 ___x2)1/2 (5'9)

If the smooth faces of the wedge extend beyond the edges of the contact the
pressure must fall to zero at the edges to avoid tension or interference outside
the contact, whence

P =aE* cota (5.10)
The pressure distribution is then

E* cot {(14-((12—x2)”2 E* cot

p(x) = ol cosh™(a/x) (5.11)
This pressure distribution is plotted in Fig. 5.2(a); it rises to an infinite value at
the apex to the wedge. It would appear that the discontinuity in slope of the
profiles within the contact region leads to a logarithmic singularity in pressure,
Although the pressure is infinite at the apex of the wedge the principal shear
stress in the x-z plane is not so. The stress components within the solids due

to the pressure distribution (5.11) may be calculated using equation (2.23). Along
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the z-axis, where o, and o, are principal stresses it turns out that
T =3$lo, — 0,1 = (E*a/m) cot a (a® + z2) 712 (5.12)
which has a finite maximum value beneath the apex:
(T)max = (E*/m) cot o
The indentation of a flat surface by a blunt cone gives similar results. Love
(1939) used the classical approach outlined in §3.1 to find the appropriate

potential function. He showed that the pressure on the face of the cone is
given by

p(r) = LE* cot & cosh™(a/r) (5.13)

and the total force
P=1maE* cota (5.19)
Sneddon (1948) used the integral transform technique to obtain the same result
and to evaluate all the components of stress within the solid. The tractions at the
surface of a cone which adheres to the contacting solid have been found by
Spence (1968).
The distribution of pressure on the cone is similar to that on the wedge: it

rises to a theoretically infinite value at the apex. At that point the tangential
stress in the surface is given by

0,=0g =—3(1 + )pg
which is also infinite. The special case of an incompressible material (v = 0.5)
is noteworthy. By considering the surface stresses we find an infinite hydro-

static pressure exists at the apex. By considering the variations in stress along
the z-axis, we find that the principal shear stress is given by

71 =13l0,— 0] = LE*4% cot o (a* + 22)7!
which has a maximum yet finite value 2E* cot « at the apex. The state of stress
at the apex therefore comprises a finite shear stress in a radial plane superposed

on an infinite hydrostatic pressure. Contours of 7; beneath the wedge are shown
by the photo-elastic fringes in Fig. 5.2(b).

5.3 Conforming surfaces

In the previous chapter smooth non-conforming surfaces in contact
were defined: the initial separation between such surfaces in the contact region
can be represented to an adequate approximation by a second-order polynomial.
Non-conforming surfaces can therefore be characterised completely by their
radii of curvature at the point of first contact. However when the undeformed
profiles conform rather closely to each other a different description of their
initial separation may be necessary. Conforming surfaces in contact frequently
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depart in another way from the conditions in which the Hertz theory applies.
Under the application of load the size of the contact area grows rapidly and
may become comparable with the significant dimensions of the contacting
bodies themselves. A pin in a hole with a small clearance is an obvious case in
point. When the arc of contact occupies an appreciable fraction of the circum-
ference of the hole neither the pin nor the hole can be regarded as an elastic
half-space so that the Hertz treatment is invalid.

We will consider first the contact of bodies whose profiles in the contact
region cannot be adequately represented by a second-order polynomial but,
nevertheless, can still be regarded as half-spaces for the purpose of calculating
elastic deformations and stresses.

The profiles are represented by a polynomial to the required degree of
approximation. Thus for a two-dimensional contact (assuming symmetry about
the point of first contact) we can express the initial separation by

h=zy+zy=A;x? + Agx® + -+ A x* " - (5.15)
and for a contact with axial symmetry
h=Ar* + A, rt + - - -+ 4,0 (5.16)

Substituting (5.15) or (5.16) in equation (4.6) gives the condition which has to
be satisfied by the normal displacements of each surface within the contact
region. Steuermann (1939) has found the distributions of pressure p,,(x) and
p,(7) for profiles having the form A4,,x*" and 4,,7*" respectively. In the two-
dimensional case we can use equations (2.47) and (2.48). Taking the index

n as defined in (5.15) and allowing for the elasticity of both surfaces, equation
(2.48) for the contact pressure becomes

Pn E*I’ZAna2n x 2n . x Zn—2
pn(x) = n(a2 _x2)1/2 o (a2 _.x2)1/2 a_) 2 (;)
1-3...(2n—3
B 2'4( - )} (5.17)

If the profiles are smooth and continuous there cannot be an infinite pressure
at x = xq, from which it follows that

p . n173...2n—1) (5.18)
=nm a .
" ; 2:4...2n
and
(/x\2n2 x\2n—4
pn(x):nE*Ana2n 2{(_) +%(_) + ...
a a
1-3...2n—3
+ ( )}(az—)c2)”2 (5.19)
2:4...2n—2)
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The second-order profiles assumed in the Hertz theory correspond ton =1, in
which case equations (5.17) and (5.19) reduce to (4.43) and (4.44) respectively.
For higher values of n the pressure has its maximum values away from the
centre of the contact. Asn — oo the configuration approaches that of two flat
surfaces which make contact over a strip |x| <, and are separated by thin gaps
or cracks on either side. The pressure distribution in this case approaches that
for a flat rigid punch in which the pressure is infinite at the edges. When the
profiles can be represented by a single term in equation (5.15) the size of the
contact strip is related to the load by equation (5.18). With a more general
profile, the pressure distribution and total load are given by the superposition
of expressions such as (5.18) and (5.19).

In the axi-symmetric case Steuermann finds the equivalent expressions:

44,E*ng®™*l  2-4...2n
@Qn+1) 1:3...02n—1)

nAE* T2 [ 2-4. 002 R e\ T
palt) = { FIE) +4()

(5.20)

n

i§ 1-'4...2n—1) a a
1-3...2n—3
ey ( )}(az )i (5.21)
2:4...2n—2)
The compression can also be found in this case:
2-4...2n

2n
1'3..‘(2;1—1)‘4"‘Z (5:22)

The two examples given above were capable of analytical solution because
the shape of the area of contact was known in advance. For more general
profiles this shape is not known; only for second-order surfaces will it be an
ellipse, Some idea of the shape may be obtained from contours of equal separa-
tion before deformation, but it cannot be assumed that this shape will be main-
tained after deformation. Numerical methods of finding the contact stresses
between conforming bodies of arbitrary profile are described in §9.

We turn now to two problems of contact between conforming solids which
cannot be represented by half-spaces: (¢) the two-dimensional contact of a pin
in a hole in an infinite plate and (») the contact of a sphere with a conforming
spherical cavity. The geometry for a pin and hole is shown in Fig. 5.3. The
difference in radii AR (= R, — R,) is small compared with either R, or R,.

The external load P is applied to the pin effectively at its centre C and causes

C to displace by §; the reaction is taken by a uniform stress in the plate at a large
distance from the hole. The deformation in the contact region is shown in Fig.
5.3(b). Points on the two surfaces S, and S, which come into contact on the
interface at .S experience both radial and tangential elastic displacements &, and
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i1g. Since AR and 6 are both small compared with R; and R,

(Ry+il,p) —(Ry+ 14,)) = (AR + §) cos ¢ (5.23)
ie.

Uy — i,y =08 cos¢p— AR (1 —cos ¢) (5.24)

When the contact arc subtends an angle +a which is not small, expression
(5.24) differs significantly from the Hertz approximation given by equation
(4.37). It is now required to find the distribution of normal pressure (neglecting
friction) which, when acting over the arc +a, produces displacements in the
surface of the pin and hole which satisfy (5.24) in the interval —a < ¢ < c.

This problem has been studied in detail by Persson (1964) who has used stress
functions appropriate to a circular disc and to a circular hole in an infinite plate
to obtain the complete stress field for both pin and hole.

Pressure distributions for different values of « are shown in Fig. 5.4(a). The
variation of the contact arc o with load P is shown in Fig. 5.4(b), both for a pin
with clearance (AR positive) and a pin with interference (AR negative). With
small loads or large clearance the relationship approaches that of Hertz
(eq. (4.42)). The relationship given by Steuermann’s theory is also shown,

Here the gap between the pin and the hole has been represented by a power
series and the contact pressure and load calculated from equations (5.17)-
(5.19). The result, though better than that of Hertz by the inclusion of higher
terms in the description of the profile, is still in error through Steuermann’s
assumption that both solids can be regarded as elastic half-spaces.

The analogous problem of a frictionless sphere in a conforming cavity has
been analysed by Goodman & Keer (1965) using methods appropriate to
spherical bodies. They find that the contact is up to 25% stiffer in compression
than would be predicted by the Hertz theory.

Fig. 5.3. Pin in a conforming hole.
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Fig. 5.4. Pin in a conforming hole: £, = E,=E, v, =v, = 0.30.
(a) contact pressure; (b) contact arc. (From Persson, 1964.)
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5.4 Influence of interfacial friction

Friction at the interface of two non-conforming bodies brought into
normal contact plays a part only if the elastic constants of the two materials
are different. The mutual contact pressure produces tangential displacements
at the interface as well as normal compression (see equation (3.415) for spheres
in contact). If the materials of the two solids are dissimilar, the tangential
displacements will, in general, be different so that slip will take place. Such
slip will be opposed by friction and may, to some extent, be prevented. We
might expect therefore a central region where the surfaces stick together and
regions of slip towards the edge of the contact. If the coefficient of limiting
friction were sufficiently high slip might be prevented entirely.

In the first studies of this problem (Mossakovski, 1954, 1963; Goodman,
1962) the build-up of tangential traction at the interface was developed incre-
mentally for a growth in contact size from a to ¢ + da. However, as Spence
(1968) pointed out, under appropriate conditions the stress field is self-similar
at all stages of loading so that the solution may be obtained directly without
recourse to an incremental technique.

In setting up the boundary conditions of the problem we start by assuming
that where there is slip the tangential traction ¢ is related to the normal pressure

p by
lq| = up . (5.25)

where u is a constant coefficient of friction. The direction of g opposes the

direction of slip. In a two-dimensional contact ¢ acts in a direction parallel to

the x-axis, inwards on one surface and outwards on the other. In an axi-

symmetrical contact the slip, and hence g, must be radial and axi-symmetrical.

For non-conforming surfaces having quadratic profiles we deduced in §4.1

(eq. (4.11)) that the magnitude of the stress and strain at any point increases

in proportion to the contact size a. In consequence of (5.25) the stresses and

strains due to the shear traction also increase in proportion to a, and the boundary

between the slipped and adhered regions will be located at a constant fraction of

a. In this way self-similarity of the stress field is maintained at all stages of loading.
As the load is increased and the contact size grows, mating points on the two

surfaces, which initially lie outside the adhesion zone, undergo different tangential

displacements. After they are enveloped by the adhesion zone, they cease to

experience any further relative displacement. Such points will then maintain

the relative tangential displacement (i,; — i1, ) and relative strain (dii,;/0x —

0i1,4/0x) which they had acquired up to that instant. Now the magnitude of

the strain grows in direct proportion to a so that, for two contacting points

lying in the adhesion zone at a distance x from the centre, we can write
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ou ol
L . L S T (5.26)
ox ox

where C is a constant to be determined.

Consider first the contact of two parallel cylinders. At a particular stage in
loading the contact width is 2z and we will assume that friction prevents slip
over a central region of width 2¢, A symmetrical normal pressure p(x) and an
anti-symmetrical tangential traction g(x) act at the interface. The normal
displacement gradients within the whole contact region are given by equation
(4.39). Substituting into equation (2.25b) and remembering that the tractions
on each surface are equal and opposite, we find

@ p(s)
——ds —nBq(x) = nE*x[2R, —a<x<ua (5.27)
_gX—S$

where 1/R = 1/R, + 1/R, and the constant § is a measure of the difference in
elastic constants of the two materials defined by equation (5.3). In the adhesion
region, substituting (2.252) into the condition of no-slip given by (5.26) gives

@ q(s) ds
nBp(x) + =—1nE*C|x|, IxI<c (5.28)
—a XS
Also for no-slip
lql < up (5.29)
In the slip regions
g=%up, c<l|xi<a (5.30)

where the sign g is determined by the direction of slip. If equations (5.27) to
(5.30) are divided by the contact size & they are transformed into equations for
(p/a), (g/a) which are independent of the actual value of a, thereby confirming

the previous argument that similarity of the stress field is maintained during
loading.

As a first step to solving equations (5.27) and (5.28) for the tractions p(x)
and g(x) we simplify the problem by assuming that there is no slip throughout
the contact area. Equation (5.28) then applies over the interval (Jx| <a) and,
together with (5.27), provides dual integral equations for p(x) and g(x) of the
type discussed in §2.7, having boundary conditions of class III. A further
simplification results from neglecting the influence of the shear traction upon
the normal pressure, i.e. by neglecting the second term on the left-hand side
of (5.27). The equations are now uncoupled. The pressure distribution is given
by the Hertz theory (equation (4.44)) and equation (5.28) for the tangential
traction may be written

a
J M =—ufpo(1 —x2/a®)V'* — LnE*C|x| (531

a S—X
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This is an integral equation of the type (2.39) having a general solution given by
(2.41).

It is convenient to imagine the traction g(x) as being made up of two compo-
nents: g'(x) and q"(x), which satisfy (5.31) with each of the terms on the right-
hand side taken in turn. Thus g'(x) is the tangential traction necessary to cancel
the difference in tangential displacements arising from the normal pressure, and
q"(x) is the traction necessary to produce the additional displacements, propor-
tion to |x |, which are necessary to satisfy the no-slip condition. Substituting
into (2.41) and integrating we find

Po X 1 a+x
'X)=8—| ——— —+ —(@®*—x>)"?In ] 5.32
') Bn[mz_xﬂug @ =) |22 (5.3
and
") CE* [ 2x ol {a + (a2 —x?)1? }] (5.33)
x)= ————— +xIn .
q o (@ —x?)""2 4 — (% —x2)1"2

The constant C is determined by the fact that the traction should fall to zero at

2)—1/2

the edges of the contact. Therefore the term (a? —x must vanish when

q'(x) and q"(x) are added, whereupon
C=20po/E*a

and

o x 1n{%}] (5.34)

If the ratio of g(x) to p(x) is examined we find that it rises to infinity at the
edges of the contact, which shows that some slip is inevitable., The realistic
circumstances in which slip takes place on each side of a central no-slip zone
of width 2c¢ have been studied by Spence (1975).

On similarity grounds Spence has shown that, for the same elastic constants
and coefficient of friction, the extent of the slip region is the same for any
indenter having the profile z = 4Ax" and is equal to that for a flat-ended punch.
The value of ¢ is therefore given by equation (2.73) in which (1 — 2v)/(1 —v) is
replaced by 28 to take into account the elasticity of both bodies. This relation-
ship is plotted in Fig. 5.5 (curve A). The traction has been evaluated by Spence
and is shown in Fig. 5.6, for u/8 = 0.99, which gives ¢ = 0.7a.

The contact of dissimilar spheres without slip has been analysed by Goodman
(1962) on the basis of neglecting the influence of tangential traction on normal
pressure, If the traction is again separated into the two components: to cancel
the tangential displacements due to normal pressure requires

a+
q@=@ﬂw~ﬁWHn
Ta a—x
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Fig. 5.5. Normal contact of dissimilar solids: the extent of the slip
region: curve A - line contact, eq. (2.73); curve B — axi-symmetric point
contact, eq. (5.38).

cla

Fig. 5.6. Tangential tractions at contact of dissimilar solids. (¢) Line
contact: A - no slip, eq. (5.34); B - partial slip, u/8 = 0.99. () Point
contact: C - no slip, eq. (5.37); D - partial slip, u/ = 0.66. Broken
lines - up/Bpo .

(2) )

0.4 0.6 0.8 1.0
x/a rla
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1
q'(r) = % _ [az(az __r2)—1/2 . 2(‘12 _r2)1/2
Tor

t+r

t—r

dt] (5.35)

.[ a -

+ In
, (f2 _ r2)1/2
and to satisfy the no-slip condition (5.26) requires

a+(a2—r2)1/2}]

¥

3CE*

(5.36)

40 == | @ =y + D

The unknown constant C is again determined by the condition that the resultant
traction should be zero at » = a, whereupon

2 ,23\1/2
q(r):.Bp_o [_l(a2_r2)1/2 +£1n {w:
m r

a ¥
2 ra ? t+r

+ 2 In dr (5.37)
ra J-r @ -2 = ]

This traction is plotted in Fig. 5.6. The ratio q(r)/p(r) is again infinite at r = a,
so that some slip must occur. The extent of the slip region in monotonic loading
is the same as for a rigid flat punch, and is given by

2c a—c

2 ln(a i c) = gK'(c/a) (5.38)
M

where K'(c/a) is the complete elliptical integral of argument (1 — ¢?/a*)'/2. This
relationship is also shown in Fig. 5.5 (curve B), and the traction when ¢ = 0.7a
is plotted in Fig. 5.6. As the coefficient of friction is decreased the no-slip circle
shrinks towards the central point and the traction approaches up(r).

Complete solutions to the problem which include the influence of tangential
traction on the pressure have been obtained by Mossakovski (1963) and Spence
(1968, 1975). They show that, depending upon the value of 8, friction can
increase the total load required to produce a contact of given size by at most
5% compared with Hertz.

Distributions of frictional traction for line contact and axi-symmetrical
point contact are plotted in Fig. 5.6. They act outwards on the more deformable
surface and inwards on the more rigid one. Without slip the magnitude of the
traction is proportional to the parameter § which characterises the difference
in elastic properties of the materials. Clearly 8 vanishes not only when the
materials are identical but also when they are both incompressible (v = 0.5).
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In these cases frictional tractions are absent and the Hertz solution applies.
Some values of g for typical pairs of materials are given in Table 5.1. The maxi-
mum possible value of 8 is 0.5 and practical values rarely exceed 0.2. Thus the
frictional traction is much smaller than the normal pressure and its influence
on the internal stresses in not great, It does have an important effect, however,
on the tangential stress o, or 0, at the surface just outside the contact area.

In the case of line contact, without slip, the traction of equation (5.34) gives
rise to stresses at the edge of contact given by

0x(—a) = 0,(a) = —2fpo (5.39)
compressive on the compliant surface and tensile on the rigid one. Slip will have

the effect of reducing this stress. If slip were complete, so that [g| = up
everywhere

Ox(—a) = 0x(@) = —(4/m)upo (5.40)
In reality slip will only be partial and there will be a no-slip zone in the centre
of width 2¢. However equation (5.40) is a good approximation provided c/a <
0.7, i.e. when u/8 < 1.0.
For the axi-symmetric case the radial stress in the surface may be calculated
using equation (3.103c). With no slip the traction of equation (5.37) gives rise
to a radial stress in the surface at » = a given by

G,(a) =—1.515(1 — 0.16v)8p, (5.41)
If, on the other hand, complete slip takes place
0a) = —1.185(1 — 0.23v) up, (5.42)

Again equation (5.42) is a good approximation for partial slip provided
¢/a < 0.7, when u/8 < 0.66. In the axi-symmetric case the normal pressure
itself gives rise to a radial tension outside the contact circle which has a maxi-
mum value §(1 — 2v)p, at r = @ and decreases asr 2 {eq. (3.44)). On the more
compliant surface (8 + ve) the compressive stress produced by the frictional
traction attenuates the tension coming from the normal pressure and has the
effect of pushing the location of the maximum tension to a radius somewhat
greater than . On the more rigid surface (8 — ve) the radial stress due to fric-
tion is tensile and adds to that due to pressure to give a maximum tension at
r = a. Johnson, O’Connor & Woodward (1973) have investigated this effect
and have shown that it influences the resistance of brittle materials to Hertzian
fracture when the material of the indenter is different from that of the specimen.
The frictional traction which develops when the load is reduced is also of
interest in view of the observation that ring cracks frequently occur during
unloading. Some appreciation of this behaviour may be obtained from Tumer’s
analysis (1979) of unloading a flat-ended punch.
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55 Adhesion between elastic bodies
So far in this book we have taken it for granted that, while a mutual
pressure is exerted at the interface between two bodies in contact, no tensile
traction can be sustained. This assumption accords with common experience
that, in the absence of a specific adhesive, the contact area between non-conform-
ing elastic solids falls to zero when the load is removed and that no tensile force
is required to separate them. On the other hand, a physicist describing the inter-
action between the ideal surfaces of two solids would tell a different story (see,
for example, Tabor, 1975). As a result of the competing forces of attraction
and repulsion between individual atoms or molecules in both bodies, two
ideally flat solid surfaces will have an equilibrium separation z; at a separation
less than z they will repel each other and at a separation greater than z, they
will attract. The variation of force per unit area as a function of separation
z is usually represented by a law of the form
p2)=—Az"+Bz7™", m>n (5.43)

as shown in Fig. 5.7 where the pressure (repulsion) is taken to be positive. In
these circumstances it is clear that a tensile force - the ‘force of adhesion’ - has
to be exerted to separate the surfaces. The magnitude of the maximum tensile
traction is largé, but the effective range of action is very small. In view of the
difficulty in measuring surface forces directly, it is usual to measure the work
2y required to separate the surfaces from z = z4 to z = o0 and to ascribe a surface
energy v to each newly created free surface. If the solids are dissimilar, the work
to separate the surfaces becomes vy, + v, — 24, where vy, and v, are the intrinsic
surface energies of the two solids and v, is the energy of the interface.

The reason why this expected adhesion between solids is not usually observed
even when great care is taken to remove contaminant films, lies in the inevitable

H

Fig. 5.7. Force-separation curve and surface energy for ideal surfaces,
eq. (5.43).
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roughness of real surfaces, whose asperity heights are large compared with the
range of action of the adhesive forces. The real area of contact, which occurs at
the crests of the high spots, is much smaller than the apparent area (see Chapter
13). Adhesive junctions formed between the lower asperities on loading are
elbowed apart on unloading by the compression between the higher asperities.
In this way adhesion developed at the points of real contact is progressively
broken down. Exceptions to this state of affairs arise with (@) cleaved mica
which can be prepared with an atomically smooth surface and (») low modulus
solids such as gelatine or rubber which can mould themselves to accommodate
a modest amount of surface roughness. In these circumstances the real area of
contact is identical with the apparent area. .

To study the effect of adhesive forces in the absence of surface roughness we
shall consider two non-conforming axi-symmetric solids which make contact
over a circular area, of radius a. Frictional tractions of the sort discussed in the
previous section will be ignored (see Johnson et al., 1971; and Johnson, 1976).
The normal elastic displacement in the contact circle produced by the normal
traction must satisfy equation (4.17), i.e.

i+, =8 — 2R
We found in §4.2(a) that this condition was satisfied by a pressure distribution
of the form

PO) = po(1—1*/a*)* + po(1 —r*/a®) ™2 (5.44)
where po = 2aE*/aR. A positive value of pg. was rejected since an infinite
pressure at ¥ = g implied interference between the two surfaces outside the
contact area: a negative value of py was rejected on the grounds that tension
could not be sustained. In the presence of adhesive (attractive) forces, however,
we cannot exclude the possibility of a negative pg. By considering the work done

in compression by the pressure of (5.44), the elastic strain energy stored in the
two bodies is easily shown to be

nqd
Uy = (&po’ + 3popo + po’) (5.49)
The total compression is found from equations (3.36) and (4.20) to be
8 = (ma[2E*)(po + 2po) (5.46)

We now consider the variation in strain energy Ug with contact radius a, keeping
the overall relative displacvement of the two bodies § constant. With p, as
specified above we find

[aljﬁ] LA (5.47)
oa E*
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Since & is kept constant no external work is done, so that for equilibrium we
would expect dUg [0z to vanish, giving pg = 0, as indeed it is in the Hertz theory.
In the present problem, adhesive forces introduce a surface energy Us which
is decreased when the surfaces come into intimate contact and increased when

they separate. Therefore we can write

Ug = —2yna®

where vy is the surface energy per unit area of each surface. The total free energy
of the system is now

Up =Ug + Ug
For equilibrium [dUy/da]s vanishes giving
7T2(12 BUS
o =— — =4y
o Do 5 B
ie.
Po = —(4yE*|ma)"’? (5.48)

where the minus sign is chosen since compressive stresses at r = ¢ have been
excluded. The net contact force is given by

a
P=J- 2mrp(r) dr = (3po + 2po)ma®
0

Substituting for po and pg and rearranging give a relationship between a and P:

4E*43\?
(P— - ) = 16myE*a® (5.49)

This relationship is plotted in Fig, 5.8 where it is compared with experimental
measurements using gelatine spheres in contact with perspex. When the bodies
are loaded by a compressive (positive) force the adhesive forces pull the surfaces
into contact over an area which exceeds that given by the Hertz theory. Reduc-
ing the load to zero leaves the surfaces adhering together with a radius given by
point C in Fig. 5.8. The application of a tensile (negative) load causes the contact
radius to shrink further. At point B, when

P=—P =—3myR (5.50)
and

a=a, = (9yR*[4E*)'3 (5.51)
the situation becomes unstable and the surfaces separate, Thus £, given by

equation (5.50) is the ‘force of adhesion’. If, instead of controlling the load,
we control the relative displacement & between the solids, the adhesive contact
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is stable down to point A in Fig. 5.8 (P = —5P,/9,a = a,/3%?). Beyond this
point the adhesive junction breaks,

The traction distribution given by (5.44) and the shape of the deformed
surface outside the contact (from equations (3.38) and (3.42z)) are shown in
Fig. 5.9 for an elastic sphere in contact with a rigid flat surface. There is an
infinite tensile traction and the deformed profile meets the flat surface in a sharp
corner at ¥ = ¢. In reality the stress will not be infinite nor the corner perfectly
sharp, but there will be some rounding of the corner until the surface traction
is consistent with the force-separation law illustrated in Fig. 5.7. Provided that
the elastic displacements are large compared with the effective range of action
of the surface forces, the analysis outlined above will give a good measure of
the influence of adhesion on the deformation of elastic bodies in contact. The
idealisation is the same as that of a Griffith crack in linear elastic fracture
mechanics. Indeed the gap just outside the contact of two separating bodies
may be thought of as an opening crack. Maugis ef al. (1976, 1978) and also
Greenwood & Johnson (1981) have made use of the ‘stress intensity factor’

Fig. 5.8. Variation of contact radius with load, eq. (5.49), compared
with measurements on gelatine spheres in contact with perspex. Radius
R: circle ~ 24.5 mm, cross - 79 mm, square - 255 mm.
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Fig. 5.9. Surface traction and deformation of an elastic sphere in contact
with a rigid plane, solid line - with adhesion, eq. (5.44), broken line -
without adhesion (Hertz).

concept of fracture mechanics to analyse the adhesive contact of elastic and
viscoelastic solids.

5.6 Contact of cylindrical bodies
The elastic compression of two-dimensional bodies in contact cannot

be calculated solely from the contact stresses given by the Hertz theory. Some
account must be taken of the shape and size of the bodies themselves and the
way in which they are supported, In most practical circumstances such calcula-
tions are difficult to perform, which has resulted in a variety of approximate
formulae for calculating the elastic compression of bodies in line contact such
as gear teeth and roller bearings in line contact (Roark, 1965; Harris, 1966).
However the compression of a long circular cylinder which is in non-conformal
contact with two other surfaces along two generators located at opposite ends
of a diameter can be analysed satisfactorily.

Such a cylinder is shown in cross-section in Fig. 5.10. The compressive load
per unit axial length P gives rise to a Hertzian distribution of pressure at 0,

2P
p=—(1—x%/a)"? (5.52)
a,
where the semi-contact-width is given by
a,®> = 4PR|nE¥ (5.53)

where EF is the composite modulus of the roller and the contacting body.
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The stress distribution in a cylinder due to diametrically opposed concen-
trated loads is given by Timoshenko & Goodier (1951) p. 107. It comprises the
superposition of the stress fields due to two concentrated forces P acting on
the plane boundaries of two half-spaces tangential to the cylinder at O, and O,
(see eq. (2.14)), together with a uniform bi-axial tension:

0y = 0, =P/aR (5.54)
which frees the circular boundary of the cylinder from stress.

Since a € R we can consider the cylinder in Fig. 5.10 as being subjected to
a combination of diametrically opposed forces distributed according to (5.52).
We now require the radial component of strain €, at a point 4 lying between
0, and C on the axis of symmetry. The state of stress at A is made up of three
contributions: (i) the stress due to the Hertzian distribution of pressure on the
contact at Oy, given by equation (5.52); (ii) the stress due to the contact
pressure at O,, which, in view of the large distance of A from O,, can be taken
to be that due to a concentrated force P, given by equation (2.16); and (iii) the
bi-axial tension given by (5.54). Adding these three contributions we obtain for

Fig. 5.10
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the stresses at A4:
P { l 2(&112»-}- 222) 42}

R a12(a12+z2)1/2 al2

P{l 2 2 } s 55
0,=—\—— — .
 n\R 2R—z (g% +2%)? ( )

(5.554)

In plane strain

€= {(l - V2)/E} {oz - oxV/(l - V)}
The compression of the upper half of the cylinder O,C is then found by inte-
grating €, from z = 0 to z = R, where a € R, to give

(11—
E

5,=P {21n (4R/ay)) — 1} (5.56)
A similar expression is obtained for the compression of the lower half of the
cylinder so that the total compression of the diameter through the mid-points
of the contact areas 0,0, is

(1—2%)
E

6 =2P {In (4R/ay) + In (4R /ay) — 1} (5.57)t
For comparison we can calculate the compression of a half-space relative to

a point at a depth d below the centre of a Hertzian contact pressure distribution,

with the result:

(1—»%)
nE

Taking d = R the true compression of the half-cylinder (5.56) exceeds the com-
pression based upon a half-space (5.58) by less than 10% within the practical
range of loads.

When one of the contacting bodies roughly takes the form of a rectangular
block of thickness ¢, then the compression of the block through its thickness
may be obtained with reasonable approximation by putting d = ¢ in equation
(5.58), provided that the thickness of the block is large compared with the
contact width (¢ > a).

Another important feature of the contact of cylindrical bodies falls outside
the scope of the Hertz theory, Real cylinders are of finite length and, although
the contact stresses over the majority of the length of the cylinder are predicted
accurately by the Hertz theory, significant deviations occur close to the ends.

6=P

{2 In (2d/a) —v/(1 —v)} (5.58)

+ This expression differs from a much quoted result due to Foeppl (Drang und
Zwang,vol. 1, p. 319, 1924) on account of Foeppl’s use of a parabolic contact
pressure distribution.
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In most circumstances there is a concentration of contact stress at the ends which
makes the effect of practical importance, In the design of roller bearings, for
example, the axial profile of the rollers is modified with a view to eliminating
the stress concentration at the ends. The different possible end conditions

which may arise when a uniform cylinder is in contact with another surface

are shown diagrammatically in Fig. 5.11. In case (z) both surfaces come to an end
at the same cross-sectional plane. On cross-sections away from the ends an axial
compressive stress 0, = v(0y + 0,) exists to maintain the condition of plane
strain. At the free ends this compressive stress is relaxed, permitting the solids

to expand slightly in the axial direction and thereby reducing the contact
pressure at the end,

An estimate of the reduction in pressure at the end may be obtained by
asSuming that the end of the cylinder is in a state of plane stress. Equation (5.56)
for the radial compression of the cylinder may be written

8 =(a*/2R) {2 1In (4R/a) — 1} (5.59)
which applies for both plane stress and plane strain. If the cylinder does not
tilt, the compression § is uniform along its length, so that the contact width
a must also be approximately uniform right up to the end. Now in plane strain
2 = 2poR(1 —v?)/E whereas in plane stress a = 2poR/E. Hence the pressure at
the end pg = (1 — v*)p,.

In case () the roller has a square end but the mating surface extends beyond
the end. In this case there 1s a sharp stress concentration at the end of the roller.
The nature of the singularity can be assessed from the considerations discussed
in §1. For example, with no friction and equal elastic moduli the contact
pressure at a small distance y from the end (y < a) will vary as y— %23,

Case (c) is typical of a cylindrical bearing roller. The track surface extends
beyond the end of the roller and the roller itself has a profile of radius » con-
necting the cylindrical body smoothly with the flat end. Provided r is appreciably
larger than the contact width 24, then the relief of axial stress o), which occurs
in case (a) is not possible in either body and both can be regarded as half-spaces
for the purpose of estimating the contact stresses. The reason for the stress
concentration in this case may be appreciated when it is remembered that the
compression of the two surfaces in the centre of the loaded region will not be
very different from that with an infinitely long roller. At the ends, however,
this same deformation has to be achieved by a load which extends in one direc-
tion only; beyond the end of the contact strip the surfaces are unloaded and
their compression relaxes as indicated in Fig. 5.11(c). Just inside the end of the
contact area the necessary compression is brought about by an increased
pressure, which results in an increase in the width of the contact strip. The
‘dog bone’ shape of contact area has been observed experimentally.



Contact of cylindrical bodies 133

Fig. 5.11. Roller end effects: (a) two coincident sharp ends, (») one
sharp end, (c) rounded end.
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To reduce the stress concentration at the ends, the axial profile of the roller
should be slightly barrelled. In theory, optimum conditions would be achieved
if the contact pressure were uniform along the length. Lundberg (1939) has
investigated this situation. A Hertzian distribution of pressure

p(x,y) = (P/mal) {1 — (x/a)*}'* (5.60)
is assumed to act on a rectangular contact area of width 24 and length 2/, where

[> a and a is given by the Hertz theory (eq. (4.43)). The compression at the
centre of the rectangle is shown to be

8(0,0) = ﬂ—lg; {1.886 + In (I/a)} (5.61)

Along the length of the roller

A(y)=6(0,00—8(0,y) = In{1—(y/1)’} (5.62)

2nlE*

This expression becomes inaccurate close to the ends of the roller. At the ends
themselves (y = £[)

Al) = ;;—; {1.193 + In (//a)} (5.63)

Equations (5.62) and (5.63) for A(y) express the small correction to the axial

profile of the roller required to obtain the uniform axial distribution of pressure
of equation (5.60). Internal stresses due to this pressure distribution have been
calculated by Kunert (1961). This profile correction, however, is difficult to
manufacture and is correct only at the design load. Therefore a more general
relationship between axial profile and pressure distribution is of practical interest.
Over most of the length of the roller the pressure distribution in the transverse
direction may be taken to be Hertzian, but the contact width now varies along
the length. Nayak & Johnson (1979) have shown that the pressure p(0, y) at
any point along most of the length is related to the semi-contact-width a(y)

at that point by the Hertz equation (4.43). At the ends, the stress distribution
is three-dimensional and must be treated as such for accurate results. Some
calculations along these lines have been carried out by Ahmadi, Keer & Mura
(1983).

5.7 Anisotropic and inhomogeneous materials

The elastic deformation in the contact region is obtained in the Hertz
theory by assuming each solid deforms as an elastic, isotropic, homogeneous
half-space. If the material of either solid is anisotropic or inhomogeneous, or
if their thicknesses are not large compared with the size of the contact area their
compliance under the contact pressure will differ from that assumed in the
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classical theory. Practical examples of contact between anisotropic solids are
found with single crystals and extruded polymer filaments; between inhomo-
geneous materials with foundations built on stratified rock or soil.

(a) Anisotropy

Detailed discussion of the contact of anisotropic solids is beyond the
scope of this book, but an important result has been demonstrated by Willis
(1966) which should be mentioned. Willis considers the contact of two non-
conforming bodies of general shape under the conditions for which the Hertz
theory applies except that the two solids have general anisotropy. He shows that
the contact area is still elliptical in shape and that the pressure distribution is
semi-ellipsoidal (eq. (3.58)). However, the direction of the axes of the ellipse
of contact are not determined solely by the geometry of the surface profiles,
but depend also upon the elastic constants. In the special case of transversely
anisotropic solids (five independent elastic constants), which are in contact
such that their axes ot symmeztry are both paraliel to the common normal at the
point of contact, analytical solutions for the contact stresses and deformations
can be obtained with hardly more difficulty than for isotropic solids (see Turner,
1980).

Two-dimensional anisotropic contact problems are discussed by Galin (1953)
and the indentation of an anisotropic half-space by a rigid punch is solved in
Green & Zerna (1954). Equation (5.57) for the compression of a cylinder has
been extended by Pinnock et al. (1966) to a transversely anisotropic polymer
filament and used to determine the values of the appropriate elastic constants
by measuring the diametral compression of the filament. A full discussion of
anisotropy may be found in the book by Gladwell (1980, Chap. 12).

(b) Inhomogeneity

Inhomogeneous materials are of interest in soil mechanics in the calcu-
lation of the settlement of foundations. The elastic modulus of soil usually
increases with depth below the surface and a particularly simple analysis is
possible for an incompressible elastic half-space (v = 0.5) whose elastic moduli
increase in direct proportion to the depth, i.e.

G=iE=mz (5.64)
where m is a material constant. Calladine & Greenwood (1978) show in a simple
way that the stress fields produced by a concentrated line load or a concentrated
point load are the same as those found in a homogeneous half-space, given by
equations (2.14) and (3.19) respectively. The displacements in the inhomo-
geneous material are different, however, being purely radial, given by u, = P/
2nmr for the line load and u, = P/4nmp? for the point load. It follows that
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a half-space of such a material behaves like a simple Winkler elastic foundation
in which the normal displacement iz, at any point on the surface is directly
proportional to the pressure applied at that point, with a stiffness 2m. Thus

a long rigid foundation, of width 2¢ and weight W per unit length, resting on

a half-space of this material would depress the surface by W/4am. The stress
distribution beneath the foundation would be that found in a homogeneous
half-space due to a uniform pressure p = W/2a given by equations (2.27).

5.8 Layered solids, plates and shells

(a) The elastic layer

The contact of solids which have surface layers whose elastic properties
differ from the substrate frequently occurs in practice; for example, the rubber
covered rollers which are widely used in processing machinery, The basic situa-
tion is illustrated in Fig. 5.12(«) in which body (2) is in contact with the surface
layer (1) on substrate (3). If the thickness » of the layer is large compared with
the contact size 2z, then the substrate has little influence and the contact
stresses between (1) and (2) are given by the Hertz theory. In this section we
are concerned with the situation in which b is comparable with or less than 24,
The behaviour then depends on the nature of the attachment of the layer to
the substrate, There are various possibilities: (2) the layer may maintain contact
with the substrate at all points, but be free to slip without frictional restraint;
(b) at the other extreme the layer may be bonded to the substrate; (¢) slip may
occur when the shear traction at interface exceeds limiting friction; and (d) the
layer, initially in complete contact with the substrate, may partially lift from
the substrate under load. The non-conforming contact between the layer and
body (2) may also be influenced by frictional traction. Even if the elastic con-
stants are the same (i.e. £, = £,, v; = v, ) the limited thickness of the layer
results in a relative tangential displacement at the interface which will be resisted
by friction. Most analyses at the present time, however, assume the contact to
be frictionless and are restricted to either the plane-strain conditions of line
contact, or the axi-symmetric contact of solids of revolution in which the
contact area is circular. We shall discuss the plane-strain situation first.

If the contact width is small compared with the radii of curvature of the
bodies, the curvature of the layer can be ignored in analysing its deformation
and the solids (2) and (3) can be taken to be elastic half-spaces.

In the case where the layer is everywhere in contact with a rigid frictionless
substrate, the boundary conditions at the layer-substrate interface are 7,, = 0
and u, = 0. The stresses in the layer are then the same as in one half of a layer
of thickness 2b to which identical pressure distributions are applied to the
opposing faces (Fig. 5.12(b)). The stresses in the layer are best expressed in
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terms of Fourier Integral Transforms, for which the reader is referred to the
books by Sneddon (1951) and Gladwell (1980, Chap. 11). In this case, with an
even distribution of pressure applied symmetrically to each surface z = b,
Sneddon shows that the normal displacement of each surface is given by

B 4(1 — V12) J ( 2 sinh? ab ) 5 oS ax
u o
& 20b + sinh 2ab

da (5.65)

Fig. 5.12
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where p(a) is the Fourier Cosine Transform of the pressure p(x), i.e.
pla) =f p(x) cos ox dx (5.66)
0

Comparable expressions to (5.65) in terms of p(«) are given by Sneddon for the
tangential displacement &, and for the components of stress 0, , 0, and 7,
throughout the layer. If the layer is bonded to the substrate the expression
for i1, corresponding to (5.65) is given by Bentall & Johnson (1968).

For a uniform pressure p distributed over an interval —¢ <x <¢, equation
(5.66) gives:

B(@) = (p/a) sin (ac) (5.67)
For a triangular distribution of pressure of peak value p,,
2 co
£(0) = 22 sin? (—) (5.68)
co 2

In the limit, as ¢ = 0, the transform of a concentrated force P is P/2. Frictional
tractions g(x) on the faces of the layer can be handled in the same way (see
Bentall & Johnson, 1968).

The awkward form of the integrand in equation (5.65) and associated expres-
sions has led to serious difficulties in the analysis of contact stresses in strips
and layers. Two approaches have been followed. In one the integrand is approxi-
mated by an asymptotic form which is appropriate for either thin strips (b < a),
or thick strips (b > a) (Meijers, 1968; Alblas & Kuipers, 1970). In the other
approach the pressure distribution p(x) is built up of discrete elements each
of a width 2¢. These may be elements of uniform pressure whose transform is
given by equation (5.67) (Conway et al., 1966, 1969) or may be overlapping
triangular elements as given by equation (5.68) (Bentall & Johnson, 1968).

The use of overlapping triangular elements gives rise to a piecewise linear distri-
bution of pressure; the application of this technique to the contact of solid
bodies is described in the next section.

The indentation by a rigid frictionless cylinder of an elastic layer which is
supported on a rigid plane surface has been studied by various workers (a) for
a layer which is bonded to the rigid base and (b) for a layer which can slip on
the base without friction. The difference between these two cases is significant
when the material of the layer is incompressible (v = 0.5). Solutions for relatively
thick layers (b > a) have been given by Pao er al. (1971) and by Meijers (1968),
and for thin layers (b <a) by Alblas & Kuipers (1970) and Meijers (1968).

In the limit when b < a, the state of affairs can be analysed in an elementary
way. A thin layer indented by a frictionless rigid cylinder is shown in Fig. 5.13.
If b < a it is reasonable in the first instance to assume that the deformation
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through the layer is homogeneous, i.e. plane sections remain plane after com-
pression as shown in Fig. 5.13(a), so that the stress ¢, is uniform through the
thickness. We will consider first the case of no friction at the interface between
the layer and the rigid substrate, whereupon ¢, = 0 throughout.

In plane strain

1 —v? 1—12
&= =T g p(x) (5.69)
The compressive strain in the element is given by the geometry of deformation:
€, = —(6 —x*/2R)/b (5.70)

Since the pressure must fall to zero at x = +a, equations (5.69) and (5.70) give
8 =a*/2R and
2

a 272
p(x) = T R (1 —x*/a*) (5.71)
whence the load
, E a3
P=§ 1—1;2]_2_[; (572)

In the case where the layer is bonded to the substrate and plane sections remain
plane, the strain €, is zero throughout, i.e.

1— 2

€x = I

<ox 4 I%Vp(x)} =0

Fig. 5.13. An elastic layer on a rigid substrate indented by a rigid
cylinder: (a) Poisson’s ratio v < 0.45; (b) v = 0.5.

P

(@) ®)
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In this case
1—0?

E

€; =

v
~pG) — o)
1—vw
Eliminating o, and substituting for €, from (5.70) gives
(1—-»? E a*

— (1 — x?/a* 5.73
1—2v1—v22Rb( /a”) (5.73)

p(x) =

and
N2 3
f (1—») E a

P= —
>1—2 1—12 Rb

(5.74)

For an incompressible material (v = 0.5) equation (5.73) implies an infinite
contact pressure, showing that the assumption that plane sections remain plane
is inappropriate in this case. However, by permitting the cross-sections of the
layer to deform into a parabola (i.e. u, to be second order in z as shown in

Fig. 5.13(b)), it may be shown that for a thin layer of an incompressible material:

Ea4 2/,2\2
1)(X)=24H,2b3 (1—=x%/a%) : (5.75)
2Fa®
P= T (5.76)
5 = a?/6R (5.77)

The relationship between contact width and load for different ratios of layer
thickness b to semi-contact width a is illustrated in Fig. 5.14, by plotting a/a.
against b/a, where a..2 = 4PR(1 — v*)/nE = the Hertz semi-contact width
(b/a — ). The full curves are from Meijers (1968) and show the difference
between v = 0.3 and » = 0.5. The asymptotic expressions for b < a, given by
equations (5.74) and (5.76) are plotted for comparison.

The pressure distribution given by (5.75) is different from that for a com-
pressible material (5.73). It has a zero gradient at the edges of the contact as
shown in Fig. 5.13(b). The change in behaviour takes place quite rapidly in the
range of Poisson’s ratio between 0.45 and 0.48. The contact pressure varies as
(b/a)~? so that it becomes high when the layer is very thin; the deformation
of the indenter or the substrate can then no longer be neglected. Stresses in an
elastic layer on an elastic substrate have been analysed by Gupta et al. (1973,
1974) and Barovich ez al. (1964); see also §10.1.

Axi-symmetrical stresses in a layer or sheet have been expressed in terms of
Hankel transforms by Sneddon (1951). The general features are similar to those
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found in plane deformation; a formal relationship between the two is discussed
by Gladwell (1980), Chap. 10. Asymptotic solutions for the stresses in a layer
due to a frictionless indenter have been found by Aleksandrov (1968, 1969) for
thick and thin layers respectively. The contact of a flat circular punch and
sphere with an elastic layer including the effects of friction has been analysed
by Conway & Engel (1969) using the numerical method. For layers bonded to
a substrate Matthewson (1981) has obtained an asymptotic solution for thin
layers including the shear stress in the bond; McCormick (1978) has considered
circular and elliptical contact areas for plates of general thickness.

(b) Receding contacts

This book is almost entirely concerned with the contact of non-
conforming solids which touch initially at a point or along a line and whose
area of contact grows with increasing load. Closely conforming contacts, on the
other hand, which touch initially over an appreciable area when loaded may
deform such that the contact area decreases. For example a perfectly fitting pin
in a hole will initially touch round the whole of its circumference but, when it
is loaded perpendicular to its axis, a gap will appear between the pin and the
hole on the unloaded side. If the loaded contact area is completely contained
within the unloaded contact area, the situation is described as receding contact,

Fig. 5.14. Contact width of an elastic layer on a rigid substrate indented
by a rigid cylinder. Solid line - Meijers (1968); broken line ~ asymptotic
solutions for b € a, eq. (5.74) and eq. (5.76); chain line - Hertz (b > a).

eijers (1968)

A B I | J 1

1.0 10

bla
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and has been shown by Tsai et al. (1974) and Dundurs (1975) to have special
properties:

(i) The contact area changes discontinuously from its initial to its loaded
shape and size on application of the first increment of load,
(ii) if the load increases in magnitude, but does not change in disposition,
the contact area does not change in shape or size, and
(iii) the displacements, strain and stresses increase in direct proportion to
the load.

The layer and the substrate shown in Fig. 5.15 will give rise to a receding
contact if the layer is free to lift off the substrate under the action of the concen-
trated load P. Gladwell (1976) investigated this problem treating the layer as
a simple beam in bending. Neglecting its own weight the beam was shown to
make contact with the substrate under load over a distance 2¢, independent of
the load, given by

1—v3® [1—? 1—a
(¢/b)® = 1.845 { / }= 1.845 (5.78)
Es E, 1+«

where a is defined by equation (5.3a). Keer et al. (1972) solved the same problem
using the proper elastic equations for a layer. The width of the contact between
the layer and the substrate was found to be close to that given by equation

(5.78) except when « was close to +1.0, i.e, when either the substrate or the

layer was comparatively rigid. Ratwani & Erdogan (1973) have examined the
situation where a layer which is free to lift is indented by a rigid cylinder

(£, > 0) as shown in Fig. 5.12(a). At light loads, when a < b, the situation is
much the same as for loading by a concentrated force and the semi-contact

width ¢ between the layer and substrate is given approximately by equation
(5.78). When a grows with load to be comparable with b, ¢ is no longer constant.
Keer et al. (1972) have also examined axi-symmetric receding contact between

a layer and an elastic half-space.

Fig. 5.15
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{c) Plates and shells

Thin plates or shell-like bodies in contact react to the contact load by
bending. Thus bending stresses are added to the contact stresses. A discussion
of the stresses in the vicinity of a concentrated load acting on a beam is given by
Timoshenko & Goodier (1951, p. 99). When the beam or plate is relatively thick
we can regard the stress field as comprising the superposition of Hertzian contact
stresses and simple bending stresses. The bending action introduces a compressive
stress in the upper layers of the plate which will add to the longitudinal compo-
nent of the contact stress field (eq. (4.46a)) which is also compressive. The
effect is to reduce the maximum value of the principal shear stress (eq. (4.47))
and to delay the initiation of plastic yield. When the plate is thin compared with
the size of the contact area, the stresses are predominantly due to bending. For
example, consider a rigid cylinder of radius R which is pressed into contact with
a flat plate of length 2/, width w and thickness 25, such that the contact arc is
2a, where b € a < R (see Fig. 5.16). The contact loading can be found by the
elementary theory of bending. Within the contact arc the plate is bent into
a circular arc of radius R, through the action of a uniform bending moment:

M = 2Ewb3[3R(1 —v?)
For the bending moment to be constant within the arc of contact, the contact

pressure must comprise two concentrated forces at its edges and be zero else-
where, whereupon

1P(I —a) = 2Ewb?*[3R(1 —v?) (5.79)
This equation determines the length of the arc of contact due to a given load P,
This simple example shows that, as the load is progressively increased from first

contact, so that the arc of contact grows from being small to large compared with
the thickness of the plate, the contact pressure distribution changes from having

Fig. 5.16

/ P2 . P2
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a maximum in the centre to one in which the pressure is concentrated at the
edges. When the deformations are large it is necessary to take the changes in
geometry into account and to make use of the theory of the ‘Elastica’ (see Wu
& Plunkett, 1965).

Axi-symmetric contact of a paraboloid with a thin plate has been studied by
Essenburg (1962) and the compression of a thin spheroidal shell between two
rigid flats by Updike & Kalnins (1970, 1972). The use of classical plate and shell
theory, in which shear deformation is ignored, leads to the contact pressure
being concentrated into a ring of force at the edge of the circle of contact
similar to the bent plate shown in Fig, 5.16. To obtain a more realistic distri-
bution of contact pressure it is necessary to include the shear stiffness of the
plate or shell. For thin plates, however, the pressure is still a minimum in the
centre, rising to a maximum at the edges (see Gladwell & England, 1975).

A spheroidal shell, unlike a cylindrical shell, is not a developable surface.
When pressed into contact with a frictionless flat surface, the shell is initially
flattened, which introduces a compressive membrane stress. When a critical
compression is reached, the shell buckles in the contact zone by the formation
of a dimple. Updike & Kalnins (1970, 1972) investigate the onset of instability
and discuss the conditions under which buckling will precede plastic yielding
and vice versa,

59 Numerical methods

Many non-Hertzian contact problems do not permit analytical solutions
in closed form. This is particularly true in the case of conforming contacts
where the initial separation cannot be described by a simple quadratic expres-
sion (eq. (4.3)) and also in problems with friction involving partial slip. It has led
to the development of various numerical methods which we shall discuss in this
section. The essence of the problem is to determine the distributions of normal
and tangential tractions which satisfy the normal and tangential boundary condi-
tions at the interface, both inside and outside the contact area whose shape and
size may not be known at the outset. In general the normal and tangential
tractions are coupled, but we saw in §4 that considerable simplification can be
achieved, with only a small loss of precision, by neglecting the effect upon the
normal pressure of the tangential traction which arises when the materials of
the two bodies are different. Thus the normal pressure is found on the assump-
tion that the surfaces are frictionless. The internal stresses, if required, are found
after the surface tractions are known.

The classical method, which has been applied to line contact and axi-

symmetric problems in which the shape of the contact area is known, is to repre-
sent the pressure distribution by an infinite series of known functions. The series
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is then truncated to satisfy the boundary conditions approximately. Although

a continuous distribution of traction is obtained, this method is basically ill-

conditioned and can lead to large errors unless the functions are chosen carefully.

The series due to Steuermann described in §3 provide examples of this method.
Modern computing facilities generally favour a different approach in which

continuous distributions of traction are replaced by a discrete set of ‘traction

elements’ and the boundary conditions are then satisfied at a discrete number

of points - the ‘matching points’, The simplest representation of a traction

distribution is an array of concentrated normal or tangential forces as shown

in Fig. 5.17(a). The difficulty with this representation lies in the infinite surface

Fig. 5.17. Discrete pressure elements (¢) concentrated forces, () uniform
(piecewise constant), (¢) overlapping triangles (piecewise linear).

(a) Py

(b
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displacement which occurs at the point of application of a concentrated force.
This difficulty is avoided if the traction is represented by adjacent columns of
uniform traction acting on discrete segments of the surface, which give rise to

a stepwise distribution as shown in Fig. 5.17(b). The surface displacements are
now finite everywhere, but the displacement gradients are infinite between
adjacent elements, where there is a step change in traction. A piecewise-linear
distribution of traction, on the other hand, produces surface displacements
which are everywhere smooth and continuous. Such a distribution of traction

in line (two-dimensional) contact may be built up by the superposition of over-
lapping triangular traction elements, as shown in Fig. 5.17(c). The corresponding
traction element in three-dimensional contact is a regular pyramid on an hexagonal
base, as shown in Fig. 5.18. An array of such pyramids, erected on an equilateral
triangular mesh and overlapping, so that every apex coincides with a mesh point,

Fig. 5.18. Overlapping hexagonal pressure elements on an equilateral
triangular (£, ) base.
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adds up to a resultant distribution of traction comprising plane triangular facets.
One such facet based on the points (2, 2), (3, 2) and (2, 3) is shown in Fig. 5.18.
The traction distributions are then specified completely by the discrete values
p; of the traction elements.

In order to find the values of the traction elements which best satisfy the
boundary conditions two different methods have been developed:

(a) the direct, or Matrix Inversion, method in which the boundary condi-
tions are satisfied exactly at specified ‘matching points’, usually the
mid-points of the boundary elements, and

(b) the Variational method in which the values of the traction elements
are chosen to minimise an appropriate energy function.

In describing the two methods we shall consider the normal contact of
frictionless solids whose profiles are arbitrary and of such a form that they
cannot be adequately characterised by their radii of curvature at their point of
first contact. The gap between the two surfaces before deformation, however,
is known and is denoted by the function A(x, y) which, in the first instance, we
shall assume to be smooth and continuous. It then follows from the principle
discussed in §1 that the contact pressure falls continuously to zero at the edge
of the contact. The elastic displacements of corresponding points on the two
surfaces then satisfy the relationship:

= 0 within contact (5.800)

Uyt 2+hx,y)—6{
a1t itz + b > 0 outside contact (5.80p)
where 8 is the approach of distant reference points in the two bodies.

Whichever method is used, it is first necessary to choose the form of pressure
element and to divide the contact surface into segments of appropriate size.
Referring to Fig. 5.17, the matrix of influence coefficients Cj; is required,
which expresses the displacement at a general point I due to a unit pressure
element centred at point J. The total displacement at / is then expressed by

(1—v¥e

{ug};=— 5 > Cypj (5.81)

Difficulty arises in line contact (plane strain) where the displacements are
undefined to the extent of an arbitrary constant. The difficulty may be over-
come by taking displacements relative to a datum point, which is conveniently
chosen to be the point of first contact, i.e. the origin. Since £(0) = 0, equation
(5.802) may be rewritten for line contact as

{L_‘zl(o) - uzl(x)} + {1222 (O) - 1722 (x)}

= 0 within contact (5.822)
—h(x)
> 0 outside contact (5.82b)
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and we rewrite equation (5.81):
1— 2

14

{#,(0) —u,(0)}; =

where By; = Coj — Cjj.

For a uniform pressure element in plane strain, the influence coefficients
are obtained from equation (2.30d) by replacing @ by ¢ and x by kc, with the
result:

) =7—17—{(k FI)In G+ )P — (k= 1)In (k— 1)}

+ const. (5.84)

where k = i —j. For a triangular pressure element the influence coefficients are
obtained from equations (2.37¢), whereby

Cy(k) = ziﬂ {k+1)?In(k+ 12+ (k—1) In(k— 1)

—2k% Ink?} + const. (5.85)

For point contacts, the influence coefficients for uniform pressure elements
acting on rectangular segments of the surface (22 x 2b) can be obtained from
equations (3.25) by replacing x by (x; — x;) and y by (y; — ;). Pyramidal
pressure elements are based on a grid with axes x (= &c) and y (=nc) inclined
at 60° as shown in Fig. 5.18. The distance JI is given by

JI=r=ck=c{t—§)* + &+ &) —ny)
+ (i —m)* 1" (5.86)
The influence coefficients are found by the method described in §3.3. At the
centre of the pyramid (i =j): C;;(0) = (3 v/3/27) In 3 = 0.9085; at a corner
C;j(1) = 3C;;(0). For values of k2 > 1 the coefficient can be found by replacing
the pyramid by a circular cone of the same volume, i.e. which exerts the same

load, with the results shown in Table 5.2. For values of k2 > 9 it is sufficiently
accurate (<0.5% error) to regard the pyramid as a concentrated force, so that

C,](k) = \/3/21[.

Table 5.2
& —&,ni—ny 1,1 2,0 2,1 3,0
k? 3 4 7 9

C,(k) 0.1627 0.1401 0.1051 0.0925
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The total load P carried by the contact is related to the values of the pressure
elements by
P=A47Yp (5.87)
where A is a constant depending upon the form and size of the pressure element.
For a uniform pressure element A is the surface area of the element; for

a pyramidal element, 4 =~/3¢?/2. We are now in a position to discuss the
methods for finding the values of p;.

(a) Matrix inversion method

The displacements {i, }; at a general mesh point / are expressed in
terms of the unknown pressures p; by equation (5.81) for point contact and
equation (5.83) for line contact. If # is the number of pressure elements, i and
j take integral values from O to (rn — 1). Substituting these displacements into
equations (5.80z) and (5.82a) respectively gives

j=n—1
Y, Cypj=(E*[c)(h; —5) (5.88)
j=0
for point contacts and
Jj=n—1
Y Bypj=(E*[c)h; (5.89)
j=0

for line contacts. If the compression 8 is specified then equation (5.88) can be
solved directly by matrix inversion for the 7 unknown values of p;. It is more
likely, however, that the total load P is specified. The compression & then consti-
tutes an additional unknown, but an additional equation is provided by (5.87),
In equation (5.88) for line contacts the origin (7 = 0) is a singular point since
Boj = ho = 0, but again equation (5.87) for the total load provides the missing
equation.

It is unlikely in problems requiring numerical analysis that the shape or size
of the contact area is known in advance. To start, therefore, a guess must be made
of the shape of the contact surface and its size must be chosen to be sufficiently
large to enclose the true area. Where the value of § is specified or can be esti-
mated, a first approximation to the contact area can be obtained from the
‘interpenetration curve’, that is the contour of separation A(x,y) = 6. This is
the area which is divided into an array of n pressure elements. After solving
equation (5.88) or (5.89) for the unknown pressures, it will be found that the
values of p; near to the periphery are negative, which implies that a tensile
traction is required at some mesh points to maintain contact over the whole of
the assumed area. For the second iteration these mesh points are excluded from
the assumed contact area and the pressures there put equal to zero. Experience
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confirms that repeated iterations converge to a set of values of p; which are
positive or zero and which satisfy equation (5.80a¢) within the region where

pj > 0 and equation (5.80b) in the region where p; = 0. The boundary between
the two regions defines the contact area to the accuracy of the mesh size.

In line contact the contact area is the strip —b < x < & where, for a given
load, 2 and b remain to be found. If the deformation is symmetrical about the
origin, so that » = a, the pressure distribution can be found without iteration.
It is preferable to take a as the independent load variable, to divide the contact
strip into 2n segments and to use 2n — 1 overlapping triangular pressure elements
as shown in Fig. 5.17(¢). This arrangement automatically ensures that the contact
pressure falls to zero at x = *a. Equation (5.83) can then be inverted directly to
find the values of p;. This method has been used by Paul & Hashemi (1981) for
normal contact and by Bentall & Johnson (1967) for problems in which tangen-
tial as well as normal tractions are present.

The procedure outlined above is appropriate for bodies whose profiles are
both smooth and continuous. If one of the bodies has a sharp corner at the edge
of the contact, the pressure at the edge of contact, instead of falling to zero,
will rise to infinity according to p~*, where p is the distance from the edge and
the value of A depends upon the elasticities of the two bodies but is approxi-
mately 0.5 (see §1). This type of contact can be incorporated into the above
method by using a boundary element in the segment adjacent to the edge of
contact in which the pressure varies as 093 as shown in Fig. 5.19. The dis-
placement at a distance x from the edge due to such an element of pressure is

Fig. 5.19. Singular pressure element.
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given by
) 1—? x—c\?
Uy,(x)=— = 2cpc{ln( )

. (4

x12 4 o172, 2
+ (x/c)”z ln( —17—1/2) - 4} +c (5.90)
x —_

(b) Variational methods

Variational methods have been applied to non-Hertzian contact
problems for two reasons: (i) to establish conditions which will determine the
shape and size of the contact area and the contact stresses uniquely and
(ii) to enable well-developed techniques of optimisation such as quadratic
programming to be used in numerical solutions.

Fichera (1964) and Duvaut & Lions (1972) have investigated general
principles which govern the existence and uniqueness of solution to contact
problems. For two bodies having continuous profiles, pressed into contact by
an overall displacement §, Duvaut & Lions show that the true contact area
and surface displacements are those which minimise the total strain energy
Ug (with 6 kept constant), provided that there is no interpenetration, i.e.
provided

azl+ azZ + h(x,y)—5 =0

everywhere, An example of the application of this principle to a Hertz contact
was given in §5.

For numerical solution of contact problems it is more convenient to work
in terms of unknown tractions rather than displacements. Kalker (1977, 1978)
has therefore proposed an alternative principle in which the true contact area
and distribution of surface traction are those which minimise the total comple-
mentary energy (¥ *), subject to the constraint that the contact pressure p is
everywhere positive, Now the total complementary energy can be written:7

V*= Uz +f p(h —8) dS (5.91)
S

where S is the surface on which p acts and U{ is the internal complementary
energy of the two stressed bodies. For linear elastic materials the complementary
energy Uf; is numerically equal to the elastic strain energy Uy, which can be
expressed in terms of the surface tractions and displacements by

U = Ug = } f plityy + fing) S (5.92)
S

t For a discussion of the complementary energy principle see T. H. Richards,
Energy methods in stress analysis, Ellis Horwood, 1977, p. 256.
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To obtain a numerical solution the prospective contact area S is subdivided
into a mesh on which elements of pressure act. Using equation (5.81) we have

(1 —vH)ec4
Vg == LXGpp (5.93)
and
f p(h—8)dS =4 Yp;(; —5) (5.94)
S

where A is defined in equation (5.87). Thus substituting from (5.93) and (5.94)
into (5.91) gives V' * as an object function quadratic in p;. The values of p;

which minimise V*, subject to p; > 0, can be found by using a standard quadratic
programming routine, e.g. that of Wolfe (1959) or Beale (1959). The contact is
then defined, within the precision of the mesh size, by the boundary between the
zero and non-zero pressures. This method has been applied to frictionless non-
Hertzian contact problems by Kalker & van Randen (1972).

To find the subsurface stresses it is usually adequate to represent the surface
tractions by an array of concentrated forces as in Fig. 5.17(z). The stress com-
ponents at any subsurface point can then be found by superposition of the
appropriate expressions for the stresses due to a concentrated force, normal or
tangential, given in §§2.2 & 3 or §§3.2 & 6.

When the size of the contact region is comparable with the leading dimensions
of one or both bodies, influence coefficients based on an elastic half-space are
no longer appropriate. Bentall & Johnson (1968) have derived influence coeffi-
cients for thin layers and strips but, in general, a different approach is necessary.
The finite-element method has been applied to contact problems, including
frictional effects, notably by Fredriksson (1976). A more promising technique
is the Boundary Element Method which has been applied to two-dimensional
contact problems by Andersson et al, (1980).



6

Normal contact of inelastic solids

6.1 Onset of plastic yield

The load at which plastic yield begins in the complex stress field of
two solids in contact is related to the yield point of the softer material in
a simple tension or shear test through an appropriate yield criterion. The yield
of most ductile materials is usually taken to be governed either by von Mises’
shear strain-energy criterion:

L=t{(01—=0,)* + (0, —03)* + (03 — o)’} =k* =Y?/3 (6.1)
or by Tresca’s maximum shear stress criterion:

max {loy—0l,loy —03l,los —oyl} =2k =Y (6.2)
in which 0y, 0, and 03 are the principal stresses in the state of complex stress,
and k and Y denote the values of the yield stress of the material in simple shear
and simple tension (or compression) respectively. Refined experiments on metal
specimens, carefully controlled to be isotropic, support the von Mises criterion
of yielding. However the difference in the predictions of the two criteria is not
large and is hardly significant when the variance in the values of k or Y and the
lack of isotropy of most materials are taken into account. It is justifiable, there-
fore, to employ Tresca’s criterion where its algebraic simplicity makes it easier
to use. A third criterion of yield, known as the maximum reduced stress criterion,
is expressed:

max {|oy—ol,lo, —0l,los—al} =k=3Y (6.3)
where 0 = (0, + 0, + 03)/3. It may be shown from conditions of invariance
that, for a stable plastic material, the Tresca criterion and the reduced stress

criterion provide limits between which any acceptable yield criterion must lie.
We shall see that these limits are not very wide.
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(a) Two-dimensional contact of cylinders

In two-dimensional contact the condition of plane strain generally
ensures that the axial stress component o, is the intermediate principal stress, so
that by the Tresca criterion yield is governed by the maximum principal stress dif-
ference (or maximum shear stress) in the plane of cross-section, i.e. the x-z plane.
Contours of principal shear stress 7, = 1|6, — 0,| are plotted in Fig. 4.5: they
are also exhibited by the photo-elastic fringes in Fig. 4.1(d). The maximum shear
stress is 0.30p, at a point on the z-axis at a depth 0.78a. Substituting in the
Tresca criterion (6.2) gives

0.60py=2k=Y

whence yield begins at a point 0.78z below the surface when the maximum
contact pressure reaches the value

4
(Po)y = —Pm = 3.3k = 1.67Y (6.4)
T

The von Mises and reduced stress criteria both depend upon the third principal
stress and hence upon Poisson’s ratio. Taking » = 0.3, the maximum value of
the left-hand side of equation (6.1) is 0.104p,? at a depth 0.70g, and the maxi-
mum value of the left-hand side of equation (6.3) is 0.37p, at a depth 0.67a.
Thus by the von Mises criterion yield begins at a point 0.70a below the surface
when

(po)y =3.1k=1.79Y (6.5)
and by the reduced stress criterion yield first occurs when
(po)y = 2.7k = 1.80Y (6.6)

We see from the three expressions (6.4), (6.5) and (6.6) that the value of the
contact pressure to initiate yield is not influenced greatly by the yield criterion
used, The value given by the von Mises criterion lies between the limits set by
the Tresca and reduced stress criteria.

The load for initial yield is then given by substituting the critical value of
Po in equation (4.45) to give

R 2
Py = 7 (Po)y (6.7)
where the suffix Y denotes the point of first yield and 1/R = 1/Ry + 1/R,.

(b) Axi-symmetric contact of solids of revolution

The maximum shear stress in the contact stress field of two solids of
revolution also occurs beneath the surface on the axis of symmetry. Along this
axis 0,, 0, and gy are principal stresses and g, = gy . Their values are given by
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equation (3.45). The maximum value of g, — 0,1, for v = 0.3, is 0.62p, at
a depth 0.48a. Thus by the Tresca criterion the value of p, for yield is given by

Po=3p, =3.2k=1.60Y (6.8)
whilst by the von Mises criterion
po = 2.8k = 1.60Y (6.9)

The load to initiate yield is related to the maximum contact pressure by equation
(4.24), which gives

T R*?
B 6E*?
It is clear from equations (6.7) and (6.10) that to carry a high load without

yielding it is desirable to combine a high yield strength or hardness with a low
elastic modulus.

Py

(Po)y’ (6.10)

(c¢) General smooth profiles

In the general case the contact area is an ellipse and the stresses are
given by the equations (3.64)-(3.69). The stresses along the z-axis have been
evaluated and the maximum principal stress difference is loy — o, which lies
in the plane containing the minor axis of the ellipse (@ > b). This stress difference
and hence the maximum principal shear stress 7; maintain an almost constant
value as the eccentricity of the ellipse of contact changes from zero to unity
(see Table 4.1, p. 99). Thus there is little variation in the value of the maximum
contact pressure to initiate yield, given by the Tresca criterion, as the contact
geometry changes from axi-symmetrical (6.8) to two-dimensional (6.4). However
the point of first yield moves progressively with a change in eccentricity from
a depth of 0.48z in the axi-symmetrical case to 0.78b in the two-dimensional
case. Similar conclusions, lying between the results of equation (6.9) for spheres
and (6.5) for cylinders, are obtained if the von Mises criterion is used.

(d) Wedge and cone

The stresses due to the elastic contact of a blunt wedge or cone pressed
into contact with a flat surface were found in §5.2, where it was shown that
a theoretically infinite pressure exists at the apex. It might be expected that
this would inevitably cause plastic yield at the lightest load, but this is not
necessarily so. Let us first consider the case of an incompressible material.
During indentation by a two-dimensional frictionless wedge the tangential stress
0, at the interface is equal to the normal pressure p (see eq. (2.26)). If v = 0.5
then the axial stress g, to maintain plane strain is also equal to p. Thus the
stresses are hydrostatic at the contact interface. The apex is a singular point.
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By considering the variation in the principal stress difference |0, — 0, | along

the z-axis, it may be shown that this difference has a maximum but finite value
of (2E* /) cot « at the apex. Then by the Tresca or von Mises criteria (which are
identical for v = 0.5 when stated in terms of k) yield will initiate at the apex if
the wedge angle « is such that

cot a > wk/E* (6.11)

Similar conclusions apply to indentation by a blunt cone when » = 0.5. An
infinite hydrostatic pressure is exerted at the apex of the cone but the principal
stress difference |0, — 0,1 along the z-axis is finite and has a maximum value at
the apex of F* cot . In this case two principal stresses are equal, so that the
Tresca and von Mises criteria are identical if expressed in terms of Y. Thus yield
will initiate at the apex if the cone angle is such that

cota> Y/E* (6.12)

For compressible materials the results obtained above are no longer true.
Instead of hydrostatic pressure combined with a finite shear, the infinite elastic
pressure at the apex will give rise to theoretically infinite differences in principal
stresses which will cause plastic flow however small the wedge or cone angle.
Nevertheless the plastic deformation arising in this way will, in fact, be very
small and confined to a small region close to the apex. In the case of the wedge
the lateral stress o, is less than o, and o,, which are equal, so that a small
amount of plastic flow will take place in the y-z plane. To maintain plane
strain, this flow will give rise to a compressive residual stress in the y-direction
until a state of hydrostatic pressure is established. Plastic flow will then cease.
Similar behaviour is to be expected in the case of the cone.

It would seem to be reasonable, therefore, to neglect the small plastic defor-
mation which arises in this way and to retain equations (6.11) and (6.12) to
express the effective initiation of yield by a wedge and a cone respectively, even
for compressible materials.

Even when the limits of elastic behaviour given by the above equations have
been exceeded and plastic flow has begun, the plastic zone is fully contained by
the surrounding material which is still elastic. This is clearly shown in the con-
tours of principal shear stress given by the photo-elastic fringe patterns in Figs.
4.1 and 5.2. For bodies having smooth profiles, e.g. cylinders or spheres, the plastic
enclave lies beneath the surface whilst for the wedge or cone it lies adjacent to
the apex. Hence the plastic strains are confined to an elastic order of magnitude
and an increase in load on the cylinders or spheres or an increase in wedge or
cone angle gives rise only to a slow departure of the penetration, the contact
area or the pressure distribution from the values given by elastic theory. For
this reason Hertz’ (18825) original suggestion that the initiation of yield due
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to the impression of a hard ball could be used as a rational measure of the hard-
ness of a material proved to be impracticable. The point of first yield is hidden
beneath the surface and its effect upon measurable quantities such as mean
contact pressure is virtually imperceptible. A refined attempt to detect by
optical means the point of first yield during the impression of a hard ball on

a flat surface has been made by Davies (1949).

We shall return to consider the growth of the plastic zone in more detail in
§3, but meanwhile we shall turn to the other extreme: where the plastic defor-
mation is so severe that elastic strains may be neglected in comparison with
plastic strains. Analysis is then possible using the theory of rigid-perfectly-plastic
solids.

6.2 Contact of rigid-perfectly-plastic solids

When the plastic deformation is severe so that the plastic strains are
large compared with the elastic strains, the elastic deformation may be neglected.
Then, provided the material does not strain-harden to a large extent, it may be
idealised as a rigid-perfectly-plastic solid which flows plastically at a constant
stress k in simple shear or Y in simple tension or compression. The theory of
plane deformation of such materials is well developed: see, for example, Hill
(19502) or Ford & Alexander (1963).

A loaded body of rigid-perfectly-plastic material comprises regions in which
plastic flow is taking place and regions in which, on account of the assumption
of rigidity, there is no deformation. (It does not follow, however, that the
stresses in the non-deforming regions are below the elastic limit.) The state of
stress within the regions of flow can be represented by a slip-line field. The slip
lines are drawn parallel to the directions of principal shearing stress at every
point in the field, i.e. at 45° to the directions of principal direct stress. Thus
they consist of a curvilinear net of ‘a lines’ and ‘8 lines” which are perpendicular
to each other at all points. An element of such a slip-line field is shown in
Fig. 6.1(a).

Since elastic compressibility is neglected, the principal stress acting perpen-
dicular to the plane of deformation is given by

03:%(01"}"02) (613)
where 0, and ¢, are the principal stresses acting in the plane of deformation.

Under these conditions the Tresca and von Mises criteria of plastic flow both
reduce to

101_02|=2k (614)

where k = Y/2 by Tresca or Y/+/3 by von Mises. Thus the state of stress in the
plastic zone comprises a variable hydrostatic stress 3(o; + 0,) denoted by o,
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Fig. 6.1. (a) Stresses acting on an element bounded by slip lines;
(b) Mohr’s circle.
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together with a constant simple shear k in the plane of deformation. This state
of stress is represented by a Mohr’s circle of constant radius k whose centre is
located by the value of ¢ at the point in question, as shown in Fig. 6.1(b). The
directions of the principal stresses relative to a fixed axis in the body are fixed
by the directions of the slip lines. By considering the equilibrium of the element
in Fig. 6.1(a) under the action of the direct stresses ¢ and the shear stress &, we
obtain

510 0o
——2k—=0 (6.15q)
o o

in the direction of an « line, and
oo o
—+2k—=0 (6.15p)
a8 a8

in the direction of a 8 line, which gives
o — 2k¢ = constant along an « linet (6.16a)
o + 2k¢ = constant along a 8 line¥} (6.16b)

Thus, by starting at a point of known stress such as a free surface, equations
(6.16) enable the variation in ¢ throughout the field to be found from the
directions of the slip lines.

The constitutive relations for a plastically deforming solid relate the stresses
to the small increments of strain. For convenience it is customary to think of
the strain and displacement increments taking place in an interval of time d¢
and to work in terms of strain rates and velocities in place of increments of
strain and displacement. The continuous deformation of the element of material
shown in Fig. 6.1(a) consists of an extension along the direction of the maxi-
mum principal stress and a compression along the direction of the minimum
principal stress. For constant volume €, = —¢,. There is no change in length
along the direction of the slip lines, so that the deformation may be visualised
as that of a ‘net’ in which the slip lines are inextensible strings. If a vector
diagram is constructed by the velocities of particles in the deformation zone
- a hodograph - the inextensibility of the slip lines requires that the ‘velocity
image’ of a segment of a slip line is perpendicular to that line. A discontinuous
mode of deformation is also possible in which an element such as that shown
slides bodily relative to an adjacent element. It is clear that the line of discon-
tinuity in particle velocity in such a deformation must coincide with a slip line.

t Some text-books take o to be positive when compressive, which changes the signs
in equations (6.16).
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There is no progressive routine for constructing the slip-line field to solve
a particular problem; it has to be found by trial. It must be self-consistent with
a velocity field, and both must satisfy the boundary conditions of the problem.
Finally it should be checked that the non-deforming (rigid) regions are capable
of supporting the loads without violating the yield condition. When all these
conditions are satisfied the slip-line field and the stresses found from it by
equations (6.16) are unique, but the associated velocity field may not be.

We shall now proceed to discuss the slip-line fields associated with the rigid-
plastic deformation of a wedge in contact with a plane surface. In the first
instance we shall take the wedge to be appreciably harder than the flat, so that
plastic deformation is confined to the flat. Secondly, we shall take the flat to
be harder, so that it remains effectively rigid and crushes the apex of the wedge.

(a) Frictionless wedge indenting a rigid-plastic surface

The normal indentation of a rigid-perfectly-plastic half-space by a rigid
wedge of semi-angle « is shown in Fig. 6.2(z). The material flows plastically in
the two symmetrical regions lettered ABCDE. The material surrounding these
regions, being assumed rigid, has not deformed at the current stage of indenta-
tion. The material displaced by the wedge is pushed up at the sides: for the
volume to be conserved the areas of triangles AOF and FBC must be equal.

The slip-line field is shown in Fig. 6.2(@). Since the face of the wedge AB is
frictionless it can sustain no shear stress. The normal pressure p,, on the wedge
face is therefore a principal stress and the slip lines meet AB at 45°. Similarly
the slip lines meet the free surface BC at 45°. The state of stress in the triangular
region BCD is a uniform compression 2k acting parallel to the surface BC It is
represented by a Mohr’s circle in Fig. 6.2(5). The hydrostatic component of
stress in this region has the value —k (shown by the centre of the circle). The
state of stress in the triangular region ABF is also uniform and is represented
by the other Mohr’s circle. The distance between the two centres represents
the difference in hydrostatic stress between the two regions, which is given by
equation (6.16a) and has the value 2ky/, where y is the angle turned through
by the « slip lines between the two regions. The state of stress in the fan BDE
is represented by intermediate Mohr’s circles whose centres are located by the
inclination of the slip line at the point in question. The pressure on the wedge
face is represented by point W on the circle: it has the uniform value given by

Pw = 2k(1+¢) (6.17)
If the total normal load on the wedge is P and the projected area of contact is
2a per unit axial length, then the mean pressure acting normal to the original
surface of the solid is given by

P
= —= = . 8
Pm Pw = 2k(1+ ) (6.18)
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The point B is a singular point in which the state of stress jumps from that at
the free surface to that under the wedge face.

To locate the position of B and to determine the value of the angle ¥ we must
consider the mode of deformation. The velocity diagram (hodograph) for the
right-hand deformation zone is shown in Fig. 6.2(c). The wedge is assumed to
be penetrating the solid with a steady velocity V, represented by oa in the hodo-
graph. AEDC, which separates the deforming region from the rigid region, is
a line of discontinuity in velocity. The region ABE moves without distortion
parallel to A£ with the velocity oe and slides relative to the wedge face with
velocity ae. The region BDC moves without distortion parallel to DC with
velocity od. The velocity of the surface BC perpendicular to itself is repre-
sented by og. Now the state of stress and deformation shown in Fig. 6.2(a)
should be independent of the depth of penetration: in other words geometrical
similarity of the slip-line field should be maintained at all stages of the indenta-
tion. The condition of geometrical similarity controls the shape of the free surface
BC. Tt requires that normal displacement from the origin O of any point on the

Fig. 6.2. Indentation by a rigid frictionless wedge.

®) ©
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free surface BC and on the wedge face 4 B should grow in direct proportion to
the component of velocity of that point normal to the surface. This condition
may be visualised by superimposing the velocity diagram on the wedge so that
o coincides with O and ¢ with A as shown in Fig. 6.2(z). The above condition
is then satisfied if the velocity image at a point on the free surface lies on the
tangent to the surface at that point. In the example in Fig. 6.2, where the free
surface is straight, all points on that surface have the same velocity od, so that
J(d) and G(g) must lie on CB produced. The normal displacement of all points
on BC is thus represented by OG. The angle ¢ may now be found by geometry.
Denoting 4B = BC = [, the height of B above 4 is given by

lcosa=c+1sin(a—1y) (6.19)
The condition that G should lie on CB produced gives
lcosy =csina+ccos(a—y) (6.20)
Eliminating //c from (6.19) and (6.20) gives
_cos v
cos(Qa—y) = m (6.21)

from which y can be found by trial for any value of . Then substituting ¢ into
equation (6.18) gives the indentation pressure p,, . The variation of p, with
wedge angle « is shown by the curve marked ‘frictionless’ in Fig. 6.7.

Returning to examine the mode of deformation more closely, we observe
that material particles originally lying along the internal line OA are displaced
to lie along the wedge face in the segment AH. Thus the nose of the wedge acts
like a cutting tool. Material lying within the triangle OAF has been displaced to
HAE. Particles lying within the triangle BDC have moved in the direction od
parallel to DC. Thus B originally lay on the surface at By where By B is parallel
to DC, and material in the deformed region BDC originally lay in the region
BoDC. Material originally in the region OBoDE has undergone a more complex
deformation governed by the fan of slip lines BDE. The segment of the original
surface OB, is folded into contact with the wedge face along BH. The distortion
of a square grid calculated from the hodograph is shown in Fig. 6.3(a). Details
of the method of calculation are given in the original paper by Hill e al. (1947).

(b) Influence of friction on wedge indentation

Friction between the face of the wedge and the indented material
influences the mode of deformation significantly. The relative motion of the
material up the face of the wedge now introduces an opposing shear stress
Tw = UPw SO that the slip lines intersect the face of the wedge at an angle
ABE = X which is less than 45°. The modified slip-line field, and Mohr’s circle
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for the stress at the wedge face, are shown in Fig. 6.4. The pressure on the
wedge face is now given by

Pw = k(1 + 2y + sin 2)\) (6.22)
and the shear stress is

Tw = k cos 2\ (6.23)
hence A is related to the coefficient of friction by

cos 2\ = u(1 + 2y + sin 2A) (6.24)

Equilibrium of the wedge gives the indentation pressure

P
Pm = 2—a=pw(1 + pcot @) (6.25)

Fig. 6.3. Deformation by a blunt wedge: (@) frictionless; (b) no slip.

(®)

Fig. 6.4. Indentation by a rough wedge with slip at the interface.
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When the hodograph is superimposed on the diagram of the wedge, as before,
the condition of similarity requires that J should again lie on the line of the free
surface BC produced. The determination of the angles ¢ and X for given values
of o and p must be carried out by a process of trial. Such calculations were made
by Grunsweig, Longman & Petch (1954) and the results are plotted in Fig. 6.7.

We note that friction causes the point A to move towards the apex of the
wedge which reduces the cutting action. With increasing friction a limit is
reached when slip at the wedge face ceases: the surface of the solid adheres
to the wedge and shear takes place in the body of the material. For a wedge of
semni-angle less than 45°, the limiting slip-line field is shown in Fig. 6.5. A slip
line coincides with the wedge face and concentrated shearing takes place just
within the material at a shear stress 7y, = k. The critical value of u and the
corresponding pressures are found by putting A = Q in equations (6.24), (6.22)
and (6.25).

With a blunt wedge (o> 45°) this solution is incorrect since the slip lines at
the apex cannot meet at an angle less than 90°. In this case a cap of undeforming
material adheres to the wedge and shear takes place on slip line BE, as shown in
Fig. 6.6. The stress state along the slip line BE is indicated by point S on the
Mohr’s circle. Equilibrium of the cap of metal ABE results in the stresses on the
face of the wedge being represented by W, i.e. the normal stress is k(1 + 2y —
cos 20 and the shear stress is & sin 2a. Hence for the cap to adhere to the wedge

y> 2 (6.26)
1+ 2y —cos 2a
whereupon the indentation pressure is given by
P
Pm == 2k(1 + y) (6.27)

Fig. 6.5. Indentation by a sharp wedge with no slip.
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As before,  is determined from the hodograph and the condition of geometrical
similarity. Values have been found by Haddow (1967) and are shown in Fig. 6.7.

The distortion of a square grid in the mode of deformation involving a built-
up nose on the wedge has been constructed and is shown in Fig. 6.3(») for direct
comparison with the frictionless mode. The difference is striking. Deformation
occurs beneath the apex of the wedge and the displacements of grid points from
their undeformed positions are approximately radial from O.

The influence of strain hardening on the slip-line field for an indenting wedge
has been investigated by Bhasin et al. (1980).

(c¢) Crushing of a plastic wedge by a rigid flat

If the wedge is appreciably softer than the flat surface the wedge will
deform plastically and the flat will remain rigid. The slip-line field suggested by
Hill (1950¢a) for frictionless contact between the wedge and the plane is shown
in Fig. 6.8(2). AEDC is a line of velocity discontinuity. The triangular region
ABE slides outwards relative to the face of the flat and, in the absence of fric-
tin, the slip lines meet the interface at 45°. The pressure on the interface is
uniform and given by

P
== 6.28
Pm = 2k(1 + ¢) (6.28)

where the angle y is determined by the condition of geometrical similarity, that
J should lie on CB produced.

Fig. 6.6. Indentation by a blunt wedge with no slip.
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An alternative mode of deformation and associated slip-line field is shown in
Fig. 6.8(b). The triangular region ABE adheres to the flat and moves vertically
with it and there is intense shear on the slip line BE. The pressure on the inter-
face is still given by equation (6.28) but, in this case, the angle is slightly larger
than before so that the pressure required to produce this mode of deformation
is higher, as shown in Fig. 6.9. The difference in pressure is due to the difference
in inclination on the surface BC of the shoulders.

For an ideally frictionless flat it is to be presumed that the deformation
would follow the pattern in Fig. 6.8(2) since this requires the lowest pressure
to cause deformation.} Friction at the interface will oppose the sliding motion
and cause the slip lines to meet the surface at B and B’ at less than 45°. This
would result in an unacceptable state of stress at 4 unless a cap of undeforming
material adheres to the contacting flat in the vicinity of A, in the manner found
when a rectangular block is compressed between two flat rigid plates (see Ford
& Alexander, 1963). The slip-line field and the profile of the free surfaces BC

T Asymmetrical modes of deformation are also possible but, since they require
higher pressures than the symmetrical mode, they will not be considered.

Fig. 6.7. Mean contact pressure for a rigid wedge indenting a rigid-
perfectly-plastic half-space.
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Fig. 6.8. Crushing of a plastic wedge by a rigid flat: (a) frictionless;
(b) no slip.
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Fig. 6.9. Contact pressure on a flat crushing a plastic wedge.
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will then be curved. This problem has not yet been solved quantitatively, so

that it is not possible to say exactly how much interfacial friction is necessary

to eliminate sliding and ensure that the adhesive mode of Fig. 6.8(b) is obtained.f
This is not a serious shortcoming, however, since the difference in indentation
pressure between the frictionless and adhesive modes is not large. It is somewhat
paradoxical that although friction is necessary to ensure that the adhesive mode
takes place, when it does so no friction forces are transmitted at the interface.

The paradox arises (@) through the neglect of elastic deformation which will
influence the frictional conditions at the interface in the ‘adhesive’ mode and
(b) through the assumption of perfect plasticity which leads in some cases to
a lack of uniqueness in the mode of deformation. Strain hardening, which is
a feature of real materials, will favour the mode of deformation in which the
plastic strains are least and are most uniformly distributed through the deforming
region.

The solutions given in Fig. 6.8 cease to apply when the angle y vanishes,

In the limit (¢ = 26.6° and @ = 14° respectively) the sides of the shoulders of
displaced material are parallel and the deforming region of the wedge is in simple
compression.

If the wedge and the flat are of comparable hardness both will deform. This
state of affairs has been examined by Johnson et al. (1964) who have determined
the limiting values of the yield stress ratio for the deformation to be restricted
to either the wedge or the flat.

(d) Conical indenters

Problems of axi-symmetrical plastic flow cannot, in general, be solved
by the method of characteristics (slip lines) as in plane strain. However Shield
(1955) has shown that, in certain cases, for material which flows plastically
according to the Tresca criterion, a slip-line field can be constructed which
specifies the state of stress, Such a field must be consistent with an associated
velocity field of axi-symmetrical deformation. As an example Shield found the
stresses in a rigid-plastic semi-infinite solid under the action of a frictionless,
flat-ended, cylindrical punch. Following Shield’s method, Lockett (1963) was
able to construct the fields due to a rigid frictionless cone penetrating a flat

1 An estimate of the average friction force necessary to produce the adhesive mode
may be obtained by applying the principle of virtual work to the frictionless
mode with friction forces introduced at the interface. The calculation gives the
critical coefficient of friction as

Mo ™ 1— (pm)s/(pm)a

where (py)s and (p), are the values of pyy, in the frictionless and adhesive modes
respectively. It is apparent from Fig. 6.9 that the value of u. is generally small.
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surface, provided the semi-cone-angle a exceeded 52.5°. The slip-line field is
similar to that for a two-dimensional wedge shown in Fig. 6.8, but the slip lines
and the profile of the deformed surface are no longer straight, The pressure on
the surface of the cone is not uniform but rises to a peak at the apex. The
limiting case, where o = 90°, corresponds to the cylindrical punch studied by
Shield. The pressure distributions and the mean indentation pressures are shown
in Fig. 6.10. The mean pressure is slightly higher than that of a frictionless wedge
of the same angle,

Indentation by a cylindrical punch in which the material does not slip relative
to the flat face of the punch has been analysed by Eason & Shield (1960).
A cone of undeforming material adheres to the surface of the punch. The mean
contact pressure is 6,05k compared with 5.69k for a frictionless punch. Strictly
speaking the distribution of stress in the cone of material adhering to the punch
is indeterminate, but an indication may be obtained by continuing the slip-line
field into this region, which results in the pressure distribution on the punch face
shown by the broken line in Fig. 6.10. From the ratio of shear stress to normal
pressure it transpires that a coefficient of friction >>0.14 is required to prevent slip.

Fig. 6.10. Indentation of a rigid-plastic half-space by a rigid cone.
Solid line - smooth, Lockett (1963); broken line - adhesive, Eason &
Shield (1960).
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(e) Curved indenters

When an indenter having a convex profile is pressed into a surface geo-
metrical similarity is not maintained. The intensity of strain increases with
increasing penetration. The slip-line field is curvilinear and difficulties of
analysis arise with the changing shape of the free surface. By assuming that
the free surface remains flat, Ishlinsky (1944) constructed a field for the inden-
tation of a rigid-plastic half-space by a rigid frictionless sphere.t In an inden-
tation for which the ratio of contact radius to sphere radius a/R = 0.376, the
mean indentation pressure was found to be 5.32k.

An exact solution has been found by Richmond ez al. (1974) for indentation
of a perfectly-plastic half-space by a rigid sphere with no slip at the interface.
The mean contact pressure is found to be almost independent of the penetration,
varying from 6.04k when a/R = 0.07 to 5.91k when a/R = 0.30 (cf. 6.05k for
the flat punch). This result is not surprising when it is remembered that the
indenter is covered by a nose of undeforming material; the profile of the
indenter can then only influence the contact pressure through small changes
in the profile of the free surface outside the contact.

In the slip-line fields considered in this section the boundary which separates
the plastically deforming region from the region below it should not be confused
with the elastic-plastic boundary which exists in any real material having some
elasticity. Rigid-plastic theory is not able to locate the elastic-plastic boundary,
but a rough estimate of its position in a plane-strain indentation may be obtained
from the elastic stress distribution under a uniform pressure acting on a half-
space given by equations (2.30) ef seq. Contours of constant principal shear
stress 7, are circles through the edges of the contact as shown in Fig. 2.7(a).
Taking the indentation pressure for a blunt wedge to be 5.1&, 7, will have the
value k along the circular contour of radius 1.6a. If this circle is taken as a first
approximation to the elastic-plastic boundary, the plastic zone extends to a depth
of 2.9a beneath the point of first contact. This is well below the boundaries of
the deforming region shown in Figs. 6.2, 6.3, 6.4 or 6.5. Another simple approach
to finding the position of the elastic-plastic boundary is given in §3.

A method for extending the slip-line field into the rigid region has been
described by Bishop (1953). He has extended the field around a two-dimensional
flat-ended punch (wedge angle & = 90°) until a boundary of zero stress is
reached. Provided these boundaries lie wholly within the actual free surfaces
of the solid body which is being indented, it can be concluded that the rigid

1 It has been shown subsequently that the slip-line field proposed by Ishlinsky is
not compatible with the associated velocity field, since there are some regions in
which the plastic work is non-positive. His result must be regarded, therefore, as
approximate. No exact solutions have been found for frictionless curved indenters.
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region can support the stresses given by the slip-line field in the deforming
region without plastic failure occurring elsewhere. From this construction the
minimum dimensions of a rectangular block can be found to ensure that the
indentation is not influenced by the size of the block. The minimum depth is
8.82 and the minimum width from the centre-line of the impression to the side
of the block is 8.7a, where a is the half-width of the punch. Since the flat punch
is the most severe case, a block of the above dimensions would contain the
indentation made by any other profile. For further discussion of this question
see Hill (1950b).

An extension of the field under a flat-ended cylindrical punch by Shield
(1955) shows that the indented solid should have a minimum depth of 3.4a
and a minimum radius from the axis of the indenter of 3.2a,

Strain hardening, discussed in more detail in §3, has the effect of pushing the
elastic-plastic boundary, where the yield stress is lower than in the more severely
strained region close to the indenter, further into the solid than perfectly plastic
theory would predict. Thus a block of strain-hardening material should be some-
what larger than the critical dimensions given above to ensure that the impression
is not influenced by the size of the block (see experiments by Dugdale, 1953,
1954).

6.3 Elastic-plastic indentation

The elasticity of real materials plays an important part in the plastic
indentation process. When the yield point is first exceeded the plastic zone is
small and fully contained by material which remains elastic so that the plastic
strains are of the same order of magnitude as the surrounding elastic strains. In
these circumstances the material displaced by the indenter is accommodated by
an elastic expansion of the surrounding solid. As the indentation becomes more
sevé;e,'either by increasing the load on a curved indenter or by using a more
acute-angled wedge or cone, an increasing pressure is required beneath the
indenter to produce the necessary expansion. Eventually the plastic zone breaks
out to the free surface and the displaced material is free to escape by plastic
flow to the sides of the indenter. This is the ‘uncontained’ mode of deformation
analysed by the theory of rigid-plastic solids in the previous section. We would
expect the plastic zone to break out to the surface and the uncontained mode
to become possible when the pressure beneath the indenter reaches the value
given by rigid-plastic theory. From the results of the previous section we can
write this pressure:

pm=cY (6.29)

where ¢ has a value about 3.0 depending on the geometry of the indenter and
friction at the interface. From the results of §6.1, first yield is also given by
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equation (6.29), where the constant ¢ has a value about unity{There is a transi-
tional range of contact pressures, lying between Y and 3Y, where the plastic
flow is contained by elastic material and the mode of deformation is one of
roughly radial expansion. The three ranges of loading: purely elastic, elastic-
plastic (contained) and fully plastic (uncontained) are a common feature of most
engineering structures.

The deformation of an elastic-perfectly-plastic material is governed by the
stress-strain relations of Reuss (see Hill, 1950a or Ford & Alexander, 1963).

In principle the contact stresses due to an elastic-plastic indentation in which

the strains remain small can be calculated. In practice this is very difficult because
the shape and size of the elastic-plastic boundary is not known a priori. The
technique whereby the solid continuum is replaced by a mesh of “finite elements’
shows promise, but the high stress concentration makes it difficult to obtain

a refined picture of the stress field in the contact zone. First studies by the
Finite Element method of the two-dimensional stresses beneath a cylindrical
indenter were made by Akyuz & Merwin (1968). More complete computations
for the indentation of an elastic-perfectly-plastic half-space by a cylinder and
sphere have been presented by Hardy er ¢l (1971), Dumas & Baronet (1971),
Lee et al. (1972) and Skalski (1979). They follow the development of the

plastic zone as the load is increased and more elements of the mesh reach the
elastic limit, Computational difficulties arose when the fully plastic state was
approached and the calculations were restricted to a load P < 100Py , where

Py is the load for first yield. These difficulties have been overcome by
Follansbee & Sinclair (1984) for ball indentation of a strain-hardening solid

well into the fully plastic state.

The pressure distributions found by Hardy ez al. are shown in Fig. 6.11.

As expected, plastic flow leads to a flattening of the pressure distribution and
at high loads may peak slightly towards the edge. The development of the
plastic zone is also shown, It roughly follows the contours of J, (defined by
eq. (6.1)) and, for the range of loads investigated, is almost completely
contained beneath the contact area.

An alternative approach to the analysis of an elastic-plastic indentation,
which avoids the numerical complexities of finite elements, follows an early
suggéstion of Bishop, Hill & Mott (1945), which was developed by Marsh (1964)
and Johnson (1970a). It is based on the observations of Samuels & Mulhearn
(1956) and Mulhearn (1959) that the subsurface displacements produced by
any blunt indenter (cone, sphere or pyramid) are approximately radial from
the point of first contact, with roughly hemi-spherical contours of equal strain
(Fig. 6.12).
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In this simplified model of an elastic-plastic indentation we think of the
contact surface of the indenter being encased in a hemi-spherical ‘core’ of
radius g (Fig. 6.13). Within the core there is assumed to be a hydrostatic
component of stress p. Outside the core it is assumed that the stresses and
displacements have radial symmetry and are the same as in an infinite elastic,
perfectly-plastic body which contains a spherical cavity under a pressure p.
The elastic-plastic boundary lies at a radius ¢, where ¢ > a. At the interface
between core and the plastic zone (@) the hydrostatic stress in the core is just
equal to the radial component of stress in the external zone, and (b) the radial

Fig. 6.11. Indentation of an elastic-plastic half-space by a rigid sphere,
Hardy et al. (1971): development of the plastic zone. Broken line -
contours of J5.

SN

= \
2\\ \6,4 \16 40

4 ==

sem—————

iy

&y

;
0
SETTPe \ rlay
.6 X

ENENY
.




Normal contact of inelastic solids 174

displacement of particles lying on the boundary r = 4 during an increment of
penetration dz must accommodate the volume of material displaced by the
indenter (neglecting compressibility of the core).

The stresses in the plastic zone a < r < ¢ are given by (Hill, 1950a, p. 99):

0,/Y=—21n(c/r)—2/3 (6.30a)

0g/Y=—21In(c/r)+ 1/3 (6.30b)
In the elastic zoner = ¢

0,/Y = =3/, op/Y = (c/r)? (6.31)

Fig. 6.12. Experimental contours of plastic strain produced by (a) ball
indentation (¢/R = 0.51) and (b) Vicker’s hardness pyramid indenter.
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Fig. 6.13. Cavity model of an elastic-plastic indentation by a cone.
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At the boundary of the core, the core pressure is given by

p/Y =—[0,/Y],=4=2/3+ 21n (c/a) (6.32)
The radial displacements are given by (Hill, 1950, p. 101)
du(r) Y )
— =— {301 =»)(c?*/r*) —2(1 — w)(r/c)} (6.33)
de E
Conservation of volume of the core requires
2na® du(a) = na® dh = na® tan § da (6.34)

where § is the inclination of the face of the cone to the surface (§ = /2 — @).
If we put » = ¢ in (6.33) and note that for a conical indenter geometrical
similarity of the strain field with continued penetration requires that dec/da =
c¢/a = constant, then equations (6.33) and (6.34) locate the elastic-plastic
boundary by

E tan /Y = 6(1 —»)(c/a)®* — 4(1 — ) (6.35)

Substitution for (¢/a) in (6.32) gives the pressure in the core. For an incom-
pressible material a simple expression is obtained:

%=§ {1 +1n (% ETB); (6.36)

Of course the stress in the material immediately below an indenter is not purely

hydrostatic. If p denotes the hydrostatic component, the normal stress will have
a value 0, = —(p + 2Y/3) and the radial stress 0, ~ —(p — Y/3). A best estimate
of the indentation pressure p,, for the spherical cavity model would therefore be
p + 2Y/3. A similar analysis may be made for two-dimensional indentation by

a rigid wedge (Johnson, 1970a).

It appears from equation (6.36) that the pressure in the hydrostatic core
beneath the indenter is a function of the single non-dimensional variable
E tan §/Y, which may be interpreted as the ratio of the strain imposed by the
indenter (tan ) to the elastic strain capacity of the material (Y/E). Elasticity
of the indenter can be taken into account by replacing £ by £* (as defined
in §4.2(a)).

The indentation pressure under elastic, elastic-plastic and fully plastic condi-
tions may be correlated on a non-dimensional graph of p,,, /Y as a function of
(E* tan 8/Y) where § is the (small) angle of the indenter at the edge of the
contact (Fig. 6.14). With a spherical indenter we put tan § = sin § = a/R which
varies during the indentation. Integration of equations (6.33) and (6.34), with
c/a =1 at the point of first yield (p,,, = 1.1Y), leads to equation (6.36) with
an additional constant (=0.19) on the right-hand side. For a Vickers diamond
pyramid, § is taken to be the angle of the cone (19.7°) which displaces the
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same volume. First yield for a spherical indenter occurs at p,,, = 1.1Y and for

a conical indenter at p, & 0.5Y. Fully plastic deformation sets an upper limit
of ~3Y for the indentation pressure which is reached at a value of (E* tan §/Y)
~ 30 for a cone and (£*a/ YR) = 40 for a sphere.

The discussion above has been restricted to elastic-perfectly-plastic solids
having a constant yield stress Y in simple compression. Tabor (1951) has
shown that the results for a perfectly plastic solid may be applied with good
approximation to a strain-hardening solid if Y is replaced by a ‘representative’
flow stress Y, measured in simple compression at a representative strain eg,
where

er ~ 0.2tan B (6.37)

For a Vickers hardness pyramid, therefore, eg =~ 0.07 (Tabor suggested 0.08)
and for a spherical indenter, eg =~ 0.2a/R. Matthews (see §6) has considered
materials which strain-harden according to a power law of index n, with the
result eg = 0.28(1 + 1/n)""(a/R), which varies slightly with n from 0.17a/R
to 0.19a/R. In this way good agreement is found between elastic-perfectly-

Fig. 6.14. Indentation of an elastic-plastic half-space by spheres and
cones. Small-dashed line ~ elastic: A cone, B sphere. Solid line - finite
elements: C Hardy et al. (1971), D Follansbee & Sinclair (1984). Chain
line - cavity model: F cone, G sphere. Large-dashed line - rigid-plastic
(sphere), E Richmond et al. (1974). Experiments: cross — pyramids,
Marsh (1964), circle - spheres, Tabor (1951).
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plastic theory and experiments on strain-hardening materials. Thus Fig. 6.14
gives a measure of the mean indentation pressure by an axi-symmetrical
indenter of arbitrary profile pressed into any elastic-plastic solid whose stress-
strain curve in simple compression is known. In particular it gives a relationship
between hardness and the flow stress in simple compression. Thus the Vickers
diamond pyramid hardness Hv; is given by

Hy = 0.93p,, ~ 2.8Yg (6.38)

where Yy is the flow stress in simple compression at a strain of about 0.08.
Experimental data for spherical indentation of various materials have been
examined by Francis (1976) and been shown to correlate well using the variables

defined above.

For a fully plastic spherical indentation ((E*a/YR) = 170), the stresses along
the z-axis and close to the surface found by the finite element method (Follansbee
& Sinclair, 1984) (1) are compared in Figs. 6.15 and 6.16 with (2) rigid-plastic
theory for a rigid punch and (3) the spherical cavity model. The general agree-
ment between the rigid-plastic theory and the finite element analysis theory is
good, particularly when it is remembered that the latter was carried out for
a strain-hardening material. Adhesion at the face of the punch causes the maxi-
mum values of ¢, and ¢, to be located beneath the surface, an effect which is

Fig. 6.15. Plastic indentation by a rigid sphere, subsurface stresses,

(A) frictionless, and (B) adhesive. (1) Finite elements, Follansbee &
Sinclair (1984). (2) Rigid-plastic punch, Shield (1955), Eason & Shield
(1960). (3) Cavity model, egs. (6.30) and (6.31).
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also apparent in the finite elements results. For the spherical cavity model, in
the fully plastic state p,,/Y = 3; E* tan /Y = 40 whereupon equation (6.35)
gives the elastic-plastic boundary at ¢/a = 2.3. The stresses are then given by
equations (6.30) and (6.31). Along the z-axis they show the same trend as the
finite elements but underestimate their magnitude. On the surface, the cavity
model predicts circumferential tension and radial compression for ¥ > 2a. This
is the opposite of the elastic state of stress in which the radial stress is tensile.
The finite element calculations also show circumferential tension but of rather
smaller magnitude. Rigid-plastic theory gives a4 = 0, = 0 (the Haar-von Kdrmén
condition) as a result of using the Tresca yield criterion. The change from radial
tension under purely elastic conditions to circumferential tension under elastic-
plastic conditions is largely responsible for the change in the mode of indentation
fracture from a ring crack with very brittle materials such as glass to a radial
crack in semi-brittle materials such as perspex (Puttick e al., 1977). Porous
materials behave differently. They respond to indentation by crushing and the
indentation pressure is of order Y, where Y is the crushing strength in uni-axial
compression (see Wilsea er al., 1975).

In addition to the contact pressure, the depth of penetration of the indenter
is also of interest. It is a difficult quantity to determine theoretically, because
of the uncertain ‘pile-up’ at the edge of the indentation. With a rigid-plastic
solid the material displaced by the indenter appears in the piled-up shoulder,
but with an elastic-plastic solid this is not the case. Most, if not all, of the dis-
placed material is accommodated by radial expansion of the elastic hinterland.

Fig. 6.16. Plastic indentation by a rigid sphere, surface stresses. Legend
as for Fig. 6.15.
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It reappears in an imperceptible increase in the external dimensions of the
indented body. Pile-up is also influenced by the strain-hardening properties of
the material. A large capacity for strain hardening pushes the plastic zone further
into the material and thereby decreases the pile-up adjacent to the indenter.

A plot of penetration § against load P is usually referred to as a compliance
curve. Suitable non-dimensional variables for a spherical indenter are:

T 5/5y=0.148(E*YRY?) (6.39)
and

P/Py = 0.043(PE**/R*Y?) (6.39b)
where the load at first yield Py is given by equation (6.10) and the corresponding
displacement 8 is related to Py by the elastic equation (4.23). The fully plastic
condition is reached when E*a/RY = 40, 1.e. when P/P, ~ 400. If, in the fully

plastic regime, it is assumed that the edges of the impression neither pile up nor
sink in, then the penetration is given approximately byt

8§ =a*/2R (6.40)
Taking the fully plastic contact pressure to be 3.0Y and constant, this gives
P/Py = 0.81(8E**/RY?) = 5.5(8/5v) (6.41)

Accurate measurements of penetration are not so easy to obtain as those of
contact pressure. Measurements by Foss & Brumfield (1922) of the penetration
under load and the depth of the residual crater are plotted non-dimensionally {
in Fig. 6.17. On the basis of the non-dimensional variables (6.39) the results
for materials of different hardness and elastic modulus lie on a common curve
which approaches the elastic line at light loads and equation (6.41) in the fully
plastic regime.

6.4 Unloading of a plastic indentation, cyclic loading and residual stresses
The contact of elastic solids loaded by a normal force, discussed in

detail in Chapters 4 and 5, is generally regarded as a reversible process. The
stresses and deformation produced by a specific contact load are then indepen-
dent of the history of loading. Small departures from perfect reversibility,
however, can arise in two ways; by slip and friction at the contact interface,
or by internal hysteresis of the materials under the action of cyclic stress.

If the materials of two contacting bodies are dissimilar, we have seen in §5.4
that some slip occurs at the periphery of the contact area. During unloading

T An expression for § which takes account of strain hardening is given by equation
(6.82).

T Since Foss & Brumfield quote hardness H rather than yield stress of their
specimens, Y has been taken as H/2.8.
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the direction of slip will reverse and the tangential surface traction will differ
from that during loading. The contact force to produce a given contact area will
be slightly greater during loading than during unloading. In a complete load
cycle a small amount of energy is dissipated through interfacial slip. Although
precise calculations have not been made it is clear that this energy dissipation

is very small. The difference in the bulk stresses between loading and unloading
will be negligible although in a situation of rapid cyclic loading the interfacial
slip itself and the heat generated may be responsible for progressive surface
damage.

Fig. 6.17, Penetration of a spherical indenter into én elastic-plastic half-
space. Solid line ~ penetration under load. Broken line - depth of
unloaded crater.
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Real materials, even metals below their yield point, are not perfectly elastic,
but exhibit some hysteresis during a cycle of stress. Such ‘elastic hysteresis’ or
‘internal damping’ gives rise to a slight irreversibility in a contact stress cycle.
Provided that the departure from perfect elasticity is small the effect upon the
overall distribution of contact stress will be small. An estimate of the energy
dissipated in one cycle of the load may be made. The usual way of expressing
the internal hysteresis of a material is by the ratio of the energy dissipated per
cycle AW to the maximum elastic strain energy in the cycle W. This ratio
a(= AW/W) is known as the hysteresis-loss factor or the specific damping
capacity. Representative values for a wide variety of materials are quoted by
Lazan (1968). The damping capacity of most materials depends upon the
amplitude of cyclic strain; the values tend to rise as the elastic limit is
approached, but are roughly constant at low and moderate strains.

The elastic strain energy when two bodies are in contact can be calculated
from the relationship between load and compression, thus

W=de6

For two spherical surfaces the relationship between P and & is given by equation
(4.23) for which i

'S
QE*2p5\1/3 z Lﬂf 3 ,
W=%( — ) 5 LThER ‘%j’ (6.42)

The energy loss in a load cycle from zero to a maximum and back to zero is
then given approximately by
AW = oW

where « is a representative value of the hysteresis-loss factor, Direct measure-
ments by the author of the energy loss in the cyclic normal contact of spheres
over a range of loads yielded a fairly constant value of a equal to 0.4% for
a hard bearing steel. This value is not inconsistent with internal hysteresis
measurements at high stress.

When the initial loading takes the material well into the plastic range the

above approach is no longer appropriate, since the differences between loading
and unloading will no longer be small. Even though large plastic deformations
occur during loading, however, it is intuitive to expect the unloading process to
‘be perfectly elastic. A simple check of this hypothesis was carried out by Tabor
(1948) from observations of the permanent indentations made by a hard steel
ball of radius R in the flat surface of a softer metal (see Fig. 6.18). The inden-
tation under load has a radius R', which is slightly greater than R due to elastic
compression of the ball (Fig. 6.18(5)). When the load is removed the plastic
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indentation shallows to some extent due to elastic recovery, so that its perma-
nent radius p is slightly greater than R’ (Fig. 6.18(c)). If the unloading process
is elastic, and hence reversible, a second loading of the plastic indentation will
follow the elastic process in which a ball of radius R is pressed into contact with
a concave spherical cup of radius p. Provided that the indentation is not too
deep, so that the assumptions of the Hertz theory still apply, the permanent
radius of the indentation can be related to the radius of the ball by equation
(4.22). Remembering that p, being concave, is negative,

4q° (—1 - l) = 3P/E* (6.43)
R

Tabor’s measurements of p were consistent with this equation to the accuracy

of the observations.

The elastic deflexion which is recovered when the load is removed can be
estimated in the same way. By eliminating R from the elastic equations (4.22)
and (4.23), the elastic deflexion 8’ can be expressed in terms of the mean contact
pressure pp, by

§'% = 271 ipﬂ
16 E*2
In the fully plastic state p, & 3.0Y, so that equation (6.44) can then be
written, in terms of the non-dimensional variables of equation (6.41), as
P/Py =8.1x1073(8'E*?/RY?)* = 0.38(8'/6vy)? (6.45)
The residual depth of the indentation after the load is removed is therefore
(8 —&"). In the fully plastic range it may be estimated from equations (6.41)
and (6.45) resulting in the line at the right-hand side of Fig. 6.17. The residual
depth calculated by the finite element analysis is plotted at the left-hand side
of Fig. 6.17. It appears that the elastic recovery given by equation (6.45) is in
good agreement with Foss & Brumfield’s measurements.

(6.44)

Fig. 6.18. Unloading a spherical indenter. (a) before loading, (») under

load, (¢) after unloading.
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A similar investigation of the unloading of conical indenters (Stilwell
& Tabor, 1961)) showed that the shallowing of the inden:ation could be
ascribed to elastic recovery and calculated from the elastic theory of cone
indentation (§5.2).

This treatment of the unloading process is only approximate, however, since
it tacitly assumes that the pressure distribution before unloading is Hertzian
and hence that the recovered profile is a circular arc. The actual pressure distri-
bution is flatter than that of Hertz as shown in Fig. 6.11. This pressure distri-
bution, when released by unloading, will give rise to an impression whose
profile is not exactly circular, but whose shape is related to the pressure by the
elastic displacement equations. Hence, accurate measurement of the recovered
profile enables the actual pressure distribution before unloading to be deduced.
This has been done by Johnson (1968b) for copper spheres and cylinders and
by Hirst & Howse (1969) for perspex indented by a hard metal wedge.

After unloading from a plastically deformed state the solid is left in a state
of residual stress. To find the residual stress it is first necessary to know the
stresses at the end of the plastic loading. Then, assuming unloading to be elastic,
the residual stresses can be found by superposing the elastic stress system due to
a distribution of surface normal traction equal and opposite to the distribution
of contact pressure. The contact surface is left free of traction and the internal
residual system is self-equilibrating. Such calculations have been made in detail
by the finite element method (Hardy et al., 1971; Follansbee & Sinclair, 1984).
They show that the material beneath the indenter is left in a state of residual
compression and the surface outside the impression contains radial compression
and circumferential tension.

The residual stresses left in the solid after a fully plastic indentation may be
estimated using the slip-line field solutions or the spherical cavity model.

A rough idea what to expect can be gained by simple reasoning: during

a plastic indentation the material beneath the indenter experiences permanent
compression in the direction perpendicular to the surface and radial expansion
parallel to the surface. During the recovery, the stress normal to the surface is
relieved, but the permanent radial expansion of the plastically deformed
material induces a radial compressive stress exerted by the surrounding elastic
material. The shot-peening process, which peppers a metal surface with a large
number of plastic indentations, gives rise to a residual bi-axial compressive
stress, acting parallel to the surface, whose intensity is greatest in the layers just
beneath the surface. The aim of the process is to use the residual compression in
the surface layers to inhibit the propagation of fatigue cracks.

Along the axis of symmetry, during plastic loading

lo,— 0,/ =Y (6.46)
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During elastic unloading,
lo,~ 0,1 = Kpy = KcY (6.47)
where K depends upon the pressure distribution at the end of loading and upon

the depth below the surface. The residual stress difference is then given by the
superposition of (6.46) and (6.47), i.e.
lo,— o1, = (Kc—1)Y (6.48)

Since (g, ), is zero at the surface, its value beneath the surface is likely to be
small compared with (o,);. In a fully plastic indentation ¢ = 3.0 and the pressure
distribution is approximately uniform which, by equation (3.33), gives
K = 0.65 at z = 0.64a. Hence (K¢ — 1) =~ 0.95 so that, from equation (6.48),
reversed yielding on unloading is not to be expected except as a consequence
of the Bauchinger effect. Even if some reversed yielding does take place it will
be fully contained and its influence on the surface profile will be imperceptible.

At the contact surface the situation is different, taking the pressure p to be

uniform, 0, = —p, 6, = g5 = —(p — Y). Elastic unloading superposes stresses
0,=p,0,=0y=73(1+20)p~ 0.8p, leaving residual stresses
(0:):=0, (0,)=(0p)=Y—02p (6.49)

Putting p = 3Y for a fully plastic indentation gives (0,); = (0g ) = 0.4Y which
is tensile.

At the surface in the plastic zone outside the contact area the stresses due to
loading are given approximately by the cavity model (egs. (6.30) and (6.31)).
The radial stress is compressive and the circumferential stress though small is
tensile. Elastic unloading would add

0,=—0p = —4(1 = 20)pma*/r*
but additional radial compression and circumferential tension are not possible.

Instead slight additional plastic deformation will occur whilst the stresses remain
roughly constant. Subsequent loading and unloading will then be entirely elastic.

6.5 Linear viscoelastic materials

Many materials, notably polymers, exhibit time-dependent behaviour
in their relationships between stress and strain which is described as viscoelastic.
The common features of viscoelastic behaviour are illustrated in Fig. 6.19 which
shows the variation of strain e(¢) in a specimen of material under the action of
a constant stress o applied for a period ¢,. The strain shows an initial elastic
response OA to the applied stress; a further delayed elastic strain AB is acquired
in time. If the material is capable of flow or creep it will also acquire a steadily
increasing creep strain BC. When the stress is removed there is an immediate
elastic response CD (= —0A) and a delayed elastic response DE. The specimen
is left with a permanent strain at £ which it acquired through the action of creep.
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This material behaviour can be incorporated into a rigorous theory of contact
stresses provided that the viscoelastic stress-strain relationships of the material
can be taken to be linear. For this requirement to be met, the strains must
remain small (as in the linear theory of elasticity) and the principle of super-
position must apply. Thus, for linearity, an increase in the stress in Fig. 6.19
by a constant factor must produce an increase in the strain response by the
same factor; further, the strain response to different stress histories, acting
simultaneously, must be identical to the sum of the responses to the stress
histories applied separately. The stress-strain relations for a linear viscoelastic
material can be expressed in various ways, but the most common is to make
use of the creep compliance function which expresses the strain response to
a step change in stress or, alternatively, the relaxation function which expresses
the stress response to a step change in strain. An isotropic material in a state of
complex stress requires two independent functions to express its response to
shear and volumetric deformation respectively. These functions correspond to
the shear modulus and bulk modulus of purely elastic solids. For simplicity, in
what follows, we shall restrict our diseussion to an incompressible material so
that its stress-strain relations can be expressed in terms of a single function
describing its behaviour in shear.t The approximation is a reasonable one for
polymers, whose values of Poisson’s ratio usually exceed 0.4. It is convenient
to write the stress-strain relations in terms of the deviatoric stress components
s = (0 — &) and the deviatoric strains e = (¢ — €) where 6 = (0, + 0, + 03) and

+ An alternative simplification is to assume that Poisson’s ratio remains constant
with time in which case the relaxation functions in response to volumetric and
shear deformations are in the fixed ratio of 2(1 + »)/3(1 — 2v).

Fig. 6.19

Time
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€ =1(e,+ €, + €3). For an incompressible elastic solid € = 0, so that

s =2Ge = 2Ge (6.50)
where G is the shear modulus. The corresponding relationship for an incom-
pressible viscoelastic material may be written as either

s(t) = j\l/(z—z) () (6.51)

or
t as(t")

e(t) = J‘ b(t—1t) —- dr (6.52)
The function W(z) is the relaxation function, which specifies the stress response
to a unit step change of strain; the function ®(¢) is the creep compliance, which
specifies the strain response to a unit step change in stress. For particular
materials, they may be deduced from appropriate spring and dashpot models
or obtained by experiment (see Lee & Rogers, 1963). Equation (6.51), expressed
in terms of the relaxation function ¥(¢), can be regarded as the superposition
of the stress responses to a sequence of small changes of strain de(z') at times
¢'. Similarly equation (6.52) expresses the total strain response to a sequence of
step changes in stress.

By way of example we shall make use of two idealised viscoelastic materials
which demonstrate separately the effects of delayed elasticity and steady creep.
The first material is represented in Fig. 6.20(a) by two springs of modulus g; and
g, together with a dashpot of viscosity nn connected as shown. For this material
the creep response to a step change is stress s, is given by

e(t) = ®(1)so =[—1 + 1— {1—exp (—t/Tl)}] So (6.53)

& &2

where T = n/g, . The response to a step change of strain e, is given by

s(t) = V¥(t)eg =

{g2 + g1 exp (—1/T7)} e (6.54)
g1 7 82

where T, = n/(g1+ £2).

The second material - a Maxwell body - is represented in Fig. 6.20() by
a spring of modulus g in series with a dashpot of viscosity n. The creep
response is

1 1
e(t) = <I>(z)s0={;+;z} So (6.55)

and the relaxation response is
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s(t) = W(t)eo =g~/ Te, (6.56)
where T = n/g is the relaxation time of the material.

The first material exhibits delayed elasticity but the ultimate strain is limited
to a finite value. The second material shows a steady creep under constant
stress, so that the strains increase continuously with time. Of course this model
is only valid during time intervals when the strains remain small. For the Maxwell
model to be representative of a ‘solid’ rather than a ‘fluid’, the viscosity n must
be large, comparable in magnitude with the modulus of elasticity g. The simplest
model of a material which exhibits both delayed elasticity and steady creep is
made up of four elements, by adding a second dashpot in series with the model
shown in Fig. 6.20(q).

We shall now examine the behaviour when a rigid spherical indenter is pressed
into contact with a viscoelastic solid. Under the action of a constant normal
force the penetration of the indenter and the contact area will both grow with
time and the distribution of contact pressure will change. In principle we wish to
find, for a given material, the variation with time of the contact area and pressure
distribution resulting from any prescribed programme of loading or penetration.
The simplest approach to this problem follows a suggestion by Radok (1957) for

Fig. 6.20. Simple viscoelastic materials which display (a) delayed
elasticity, (b) steady creep (Maxwell).
(@) )
&2
8y

T I+e i 1+e 1

¢

Creep response to step in stress 5o

% 8€o
s

Stress relaxation due to step in strain e,
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finding the stresses and deformations in cases where the corresponding solution
for a purely elastic material is known,

It consists of replacing the elastic constant in the elastic solution by the
corresponding integral operator from the viscoelastic stress-strain relations.
If the deformation history is known, the stresses are found by replacing 2G
in the elastic solution by the integral operator, expressed in terms of the relaxa-
tion function ¥(¢) (eq. (6.51)). On the other hand, if the load or stress history
is known, the variation in deformation is found from the elastic solution by
replacing the constant (1/2G) by the integral operator involving the creep com-
pliance ®(?) (eq. (6.52)). Lee & Radok (1960) show that this approach can be
applied to the contact problem provided that the loading programme is such
that the contact area is increasing throughout.

When two purely elastic spherical bodies are pressed into contact by a force
P, the radius of the contact circle @, the penetration § and the contact pressure
p are given by equations (4.22), (4.23) and (4.24). If one sphere is rigid and the
other is incompressible with a shear modulus G, these expressions for  and
6 may be written:

1
2 = (R8)Y2 =3 (2_0_) RP (6.57)
and for the pressure distribution:
4
p(r):;§2G(a2 "I‘2)1/2 (658)

where 1/R is the relative curvature of the two surfaces (1/R; + 1/R,). When the
material is viscoelastic a and p vary with time so, following Radok’s suggestion,
we rewrite equation (6.58) for the pressure, replacing 2G by the relaxation
operator for the material, thus for r <a(t')

p(r,t) = ijt@(t —t) i, {a®(@") —r*}*2 dt’ (6.59)
7R Jo dt
Similarly the contact force is given by
P(t)= i ft\Ir(t—t’) d—,a3(t’) dar’ (6.60)
3R Jo dt

If the variation of penetration §(¢) is prescribed, then the variation in contact
radius a(?) is given directly by the first of (6.57), i.e.

a*(t) = R&(1)
which can be substituted in (6.59) to find the variation in pressure distribution.
It is more common however, for the load variation P(¢) to be prescribed. In this
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case we replace (1/2G) in (6.57) by the creep compliance operator to obtain
t d
a3(t)=%Rf cb(t~t’)(i—t7P(t’) dr’ (6.61)
0

The integral form of equations (6.59) and (6.61) may be interpreted as the
linear superposition of small changes in p(r) brought about by a sequence of
infinitesimal step changesin & or P. Lee & Radok (1960) show that the pressure
distribution given in equation (6.59) produces normal displacements of the
surface of the solid i, (#, t) which conform to the profile of the rigid sphere
within the contact area (r < 2) at all times, i.e.

u,(r, 1) =56@)—r*/2R
forall £,

Some of the significant features of viscoelastic contact will now be illustrated
by applying the above method of analysis to two particular cases: the response
of each of the two idealised viscoelastic materials shown in Fig. 6.20 to a step
load applied to a rigid sphere. Thus the variation in load is prescribed:

Pt)y=0, t<0; P{t)=P,, t>0.
For a single step, equation (6.61) becomes
(1) =3RP,®(1), t>0 (6.62)

(a) Material with delayed elasticity

The material characterised in Fig. 6.20(z) has the creep compliance
®(¢) given by equation (6.53), which can be substituted in equation (6.62) to
give the variation in contact radius

@ (r)= %RPO{—I S (1—e7 4T (6.63)
& &2

Immediately the load is applied there is an instantaneous elastic response to give

a contact radius aq = (3RP,/8g;)"">. The contact size then grows with time as

shown by curve A in Fig. 6.21, and eventually approaches

a;= {3RPy(1/g, + 1/8‘2)/8}1/3 .

Initially the contact pressure follows the elastic distribution of the Hertz
theory given by (6.58) with 2G = g, and a = a4. Finally the pressure distribution
again approaches the elastic form with 2G = g,g,/(g, + g,) and 2 = a,. At
intermediate times the pressure distribution can be found by substituting the
relaxation function ¥(¢) from (6.54) and a(¢) from (6.63) into equation (6.59)
and performing the integrations. These computations have been carried out by
Yang (1966) for g, = gy; the results are plotted in Fig. 6.22. 1t is apparent that
the pressure distribution is not very different from the Hertz distribution at any
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Fig. 6.21. Growth of contact radius a(#) due to a step load Pp applied to
a rigid sphere of radius R. (A) Three parameter solid (Fig. 6.20(a)) with
g1=g,=gand T = n/2g, (B) Maxwell solid with T = n/g, and (C)
viscous solid, T = 2n/s.

(B)

©)
(A)

I I i

0 1 2

Time ¢/T

Fig. 6.22. Variation of pressure distribution when a step load is applied
to a sphere indenting the 3-parameter solid of Fig. 6.20(A).
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stage in the deformation. The effect of delayed elasticity, therefore, would seem
to comprise a growth in the contact from its initial to its final size; the stresses
at any instant in this process being distributed approximately according to
elastic theory.

(b} Material with steady creep

The simplest material which exhibits steady creep is the Maxwell solid
depicted in Fig. 6.20(b). The growth of contact size produced by a step load is
found by substituting the creep compliance in (6.55) into equation (6.62) with
the result

a2t = %RPO(1+l ) (6.64)
g M '
Once again, the initial elastic deformation will give 2 = (3RP,/8¢)'’® immedi-
ately the load is applied. The value of ¢ will then grow continuously according
to equation (6.64), as shown in Fig. 6.21, although it must be remembered that
the theory breaks down when a becomes no longer small compared with R,
Substituting the relaxation function ¥(¢) = g e /7 from (6.56) together with
(6.64) into equation (6.59) enables the variation in pressure distribution to be
found. Numerical evaluation of the integral results in the pressure distributions
shown in Fig. 6.23. The initial elastic response gives a Hertzian distribution of
stress. As the material creeps the pressure distribution changes markedly. The
growth of the contact area brings new material into the deformed region which
responds elastically, so that, at the periphery of the contact circle, the pressure
distribution continues to follow the Hertzian ‘elastic’ curve. In the centre of the
contact the deformation does not change greatly, so that the stress relaxes
which results in a region of low contact pressure. Thus, as time progresses, we
see that the effect of continuous creep is to change the pressure distribution
from the elastic form, in which the maximum pressure is in the centre of the
contact area, to one where the pressure is concentrated towards the edge.

(c) Purely viscous material

It is interesting to observe that the phenomenon of concentration of
pressure at the edge of contact arises in an extreme form when the material
has no initial elastic response. A purely viscous material such as pitch, for
example, may be thought of as a Maxwell material (Fig. 6.20(b)) in which the
elastic modulus g becomes infinitely high. For such a material the stress response
to a step change of strain - the relaxation function - involves a theoretically
infinite stress exerted for an infinitesimally short interval of time. This difficulty
can be avoided by rewriting the viscoelastic stress-strain relations (eq. (6.51)
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and (6.52)) in terms of differential rather than integral operators. Thus a purely
viscous material, with viscosity 1 (as usually defined), has the stress-strain
relationship

s(t) = 2nDe(t), \)Qhere D =d/dt. (6.65)

Following Radok’s method we can now replace G in the elastic solution by the
differential operator D. From the elastic equation (6.57) we get

31
a® =(R§)**= — —RP
16nD

For the case of a step load, in which P has a constant value £, ( > 0),
3R
a® =(R8)¥? = — — Pyt (6.66)
16 n

The pressure distribution is obtained by replacing 2G by 21D in the elastic
equation (6.58)

8
P, )= D@ —r*)”
TR

Py
— (az _r2)—1/2 (667)
2ma

Fig. 6.23. Variation of pressure distribution when a step load is applied
to a sphere. Solid line - Maxwell fluid, T = n/g. Chain line - purely
viscous fluid, = 3a8. Broken line - elastic solid (Hertz).
=
s

1.0
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This pressure distribution maintains the same shape as the contact size grows;
it rises to a theoretically infinite value at the periphery of the contact circle, as
shown in Fig. 6.23, This result is not so surprising if it is remembered that,
when the moving boundary of the contact circle passes an element of material
in the surface, the element experiences a sudden jump in shear strain, which
gives rise to the theoretically infinite stress, Other idealised materials which
have no initial elastic response, for example a Kelvin solid (represented by the
model in Fig. 6.20(@) in which the spring g, is infinitely stiff) would also give
rise to an infinite pressure at the edge of the contact. Real solid-like materials,
of course, will have sufficient elasticity to impose some limit to the edge
pressures.

So far we have considered a rigid sphere indenting a viscoelastic solid: Yang
(1966) has investigated the contact of two viscoelastic bodies of arbitrary
profile. He shows that the contact region is elliptical and that the eccentricity
of the ellipse is determined solely by the profiles of the two surfaces, as in the
contact of elastic bodies, i.e. by equation (4.28). Further, the approach of the
two boaies at any instant 6(¢) is related to the size of the contact region, a()
and b(z), at that instant by the elastic equations. When the material of both
bodies is viscoelastic, the deformation of each surface varies with time in such
a way that each body exerts an identical contact pressure on the other. In these
circumstances equations (6.59) and (6.61) still yield the variations of contact
pressure and contact size with time, provided that the relaxation and creep
compliance functions W(¢) and ®(r) are taken to refer to a fictitious material
whose elements may be thought of as a series combination of elements of the
two separate materials, This procedure is equivalent to the use of the combined
modulus £* for elastic materials.

The method of analysis used in this section is based upon Radok’s technique
of replacing the elastic constants in the elastic solution by the corresponding
integral or differential operators which appear in the stress-strain relations for
linear viscoelastic materials. Unfortunately this simple technique breaks down
when the loading history is such as to cause the contact area to decrease in size.
Lee & Radok (1960) explain the reason for this breakdown. They show that,
when their method is applied to the case of a shrinking contact area, negative
contact pressures are predicted in the contact area. In reality, of course, the
contact area will shrink at a rate which is different from their prediction such
that the pressure will remain positive everywhere.

This complication has been studied by Ting (1966, 1968) and Graham (1967),
with rather surprising conclusions. If, at time #, the contact size a() is decreasing,
a time ¢, is identified as that instant previously when the contact size a(#;) was
increasing and equal to a(r). It then transpires that the contact pressure p(r, t)
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depends only upon the variation of contact size prior to ¢, during which it is

less than a(z). Hence equation (6.59) can still be used to find the contact pressure
at time ¢, by making the limits of integration 0 and ¢,. Equation (6.61) can be
used to obtain a(t'), since the contact is increasing in the range 0 <t' < t;. The
penetration §(¢), on the other hand, exhibits the opposite characteristics. During
the period 0 < ¢’ < #;, whilst a(¢') is increasing to a(#,), the penetration §(¢') is
related to a(¢') by the elastic equation (6.57) and is not dependent upon the rate
of loading. But when a(¢) is decreasing, the penetration §(¢) depends upon the
time history of the variation of contact size during the interval from ¢ to z. For
the relationship governing the variation of penetration with time when the
contact area is shrinking, the reader is referred to the paper by Ting (1966).

If the loading history P(f) is prescribed, the variation in contact size a(t) may
be found without much difficulty. As an example, we shall investigate the case
of a rigid sphere pressed against a Maxwell material (Fig. 6.20(b)) by a force
which increases from zero to a maximum Py and decreases again to zero, accord-
ing to

P(t) = Py sin (¢/T) (6.68)
as shown in Fig. 6.24. The material has an elastic modulus g and time constant
n/g = T. Whilst the contact area is increasing its size is given by substituting the

creep compliance of the material from (6.55) and the load history of (6.68) into
equation (6.61), to give

a3(f)=%th§{1+(t—r')/T}‘¥§_Sizt("_/T) i
o
3RP,
= % {sin (¢/T) — cos (¢/T) + 1} 6.69)

This relationship only holds up to the maximum value of a(¢), which occurs at

t =ty = 3wT/4. When a(?) begins to decrease we make use of the result that the
contact pressure p(r, ¢) and hence the total load P(¢) depend upon the contact
stress history up to time #; only, where ¢, < ¢, and ¢, is given by

a(ty) = a(?). (6.70)
To find ¢;, we use equation (6.60) for the load; and since the range of this

integral lies within the period during which the contact size is increasing, we may
substitute fora®(¢") from equation (6.69) with the result that

P(t) = Pye”U/T f

0

2

T ,
et /T {cos (t'/T) + sin (¢'/T)} d(t'/T)

= Py YTt /T sin (1,/T) (6.71)
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Since the load variation is known from (6.68), equation (6.71) reduces to

e?/T sin (¢/T) = e"/7 sin (t,/T) (6.72)
This equation determines #; corresponding to any given ¢ It is then used in
conjunction with the relationship (6.69) to find a(z) during the period when
the contact is decreasing (¢ > ;). The process is illustrated in Fig. 6.24 by
plotting the function e*/7 sin (¢/T).

From the figure we see that the maximum contact area is not coincident with
the maximum load; the contact continues to grow by creep even when the load
has begun to decrease. Only at a late stage in the loading cycle does the contact
rapidly shrink to zero as the load is finally removed. The penetration of the
sphere 6(¢) also reaches a maximum at ¢, . During the period of increasing inden-
tation (0 < < ty,), the penetration is related to the contact size by the elastic
equation (6.57). During the period when the contact size is decreasing the
penetration is greater than the ‘elastic’ value by an amount which depends upon

Fig. 6.24. Contact of a sphere with a Maxwell solid under the action of
a sinusoidally varying force P = Pysin (/7).
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the detailed variation of a(¢) in this period. Thus an indentation remains at the
time when the load and contact area have vanished.

The example we have just discussed is related to the problem of impact of
a viscoelastic body by a rigid sphere. During impact, however, the force variation
will be only approximately sinusoidal; it will in fact be related to the penetration,
through the momentum equation for the impinging sphere. Nevertheless it is
clear from our example that the maximum penetration will lag behind the
maximum force, so that energy will be absorbed by the viscoelastic body and
the coefficient of restitution will be less than unity. This problem has been
studied theoretically by Hunter (1960) and will be discussed further in §11.5(c).

6.6 Nonlinear elasticity and creep

Many materials, particularly at elevated temperatures, exhibit non-
linear relationships between stress, strain and strain rate. Rigorous theories of
nonlinear viscoelasticity do not extend to the complex stress fields at a non-
conforming contact, but some simplified analytical models have proved useful.
Two related cases have received attention: (i) a nonlinear elastic material with
the power law stress-strain relationship

€ = €o(0/0p)" (6.73)
and (i) a material which creeps according to the power law:
€= éo(a/ao)nzBOn (674)

where 0y, €¢ and €, are representative values of stress, strain and strain rate
which, together with the index #n, may be found by fitting the above relation-
ships to uniaxial test data. The most frequent use of this nonlinear elastic model
is to describe the plastic deformation of an annealed metal which severely strain-
hardens. The model only applies, of course, while the material is being loaded,
i.e. when the principal strain increments satisfy the condition

{(de;— dey)* + (de; — d€3)2 + (des — de;)*} >0
By taking values of # from 1 to e a range of material behaviour can be modelled
from linear elastic, in which Young’s modulus £ = 0,4/eq, to rigid-perfectly-
plastic in which yield stress Y = o4 (Fig. 6.25). The power law creep relationship

(6.74) applies to the steady-state or ‘secondary’ creep of metals at elevated
temperatures, provided the strain rate is less than about 107 s7'.

Concentrated line load

The stresses and deformation produced by a concentrated normal line
load acting on a half-space which deforms dccording to either of the constitutive
laws (6.73) or (6.74) can be found exactly. This is the nonlinear analogue of the
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linear elastic problem considered in §2.2. For a nonlinear elastic material the
stress system was shown by Sokolovskii (1969) to be (in the notation of Fig. 2.2)

P
0,=—1—)—(cosh k)" (6.75)

Og = Tyg = 0

where D = 2 [{/2 (cosh k8)/ ™ cos 6 d6, and k = n(n — 2) for conditions of
plane strain.T The stress field is a simple radial one as in the linear case. In that
case n = 1, k =~/(—1), (cosh k8)'/" = cos 8, D = /2 whereupon equation
(6.75) reduces to equation (2.15). Note that the stress is zero at the free surface
where § = =m/2. A special case arises whenn = 2;k = 0,D = 2 and 6, = —P/2r,
which is independent of 8. With materials which strain-harden only to a moderate
extent, n > 2, so that £ > 0; the stress o, at constant radius 7 increases with
# from a minimum directly below the load (§ = 0) to a maximum at the
surface (§ = =n/2). Expressions for the displacements u,(r, ) and uy(r, ) are
given by Arutiunian (1959) for plane strain and by Venkatraman (1964) for plane
stress.

The stresses, strains and displacements at any point in the solid are directly
proportional to the applied load P; so also are increments of stress and strain
acquired in a time increment dz This implies that the above solution, derived

1 The problem has been solved by Venkatraman (1964) for ‘plane stress’, for which
k=nn-—3)/2.

Fig. 6.25. Nonlinear power-law material: € = €4(0/0,)". Linear elastic:
n =1, FE = 0gy/€o. Perfectly-plastic, n = o0, ¥ = 0.
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for a nonlinear elastic material specified by equation (6.73), applies equally to
a creeping material specified by (6.74) in which strains are replaced by strain
rates and displacements by velocities.

The stresses and displacements due to a point force acting on a nonlinear
half-space - the nonlinear equivalent of the problem considered in §3.2 - have
been analysed by Kuznetsov (1962).

Contact of nonlinear solids

For linear materials, whether elastic or viscoelastic, the stresses and
displacements caused by a concentrated force can be superposed to find the
stresses and displacements caused by a distributed load or by the contact of
bodies with known profiles. With nonlinear materials the principle of super-
position is no longer applicable, but Arutiunian (1959) argues that the surface
displacement produced by a distributed load acting on a small segment of the
boundary of a nonlinear half-space can be expressed by a series expansion
whose dominant term is that obtained by the superposition of the displacements
given by the solution for a concentrated force described above. On the basis of
this approximation, expressions are developed from which the contact size and
pressure distribution at any time can be found numerically when the value of
the index » in equation (6.73) or (6.74) is specified.

In the special case of a rigid die with a flat base indenting a nonlinear half-
space, the boundary conditions at the contact surface for a nonlinear elastic
body (e.g. (6.73)) and a power law creeping solid (e.g. (6.74)) are analogous.

In the first case the displacement i1, = constant = §, and in the second the
surface velocity i1, = constant = §. The situation is similar, therefore, to loading
by a concentrated force discussed above: the pressure on the face of the die is
the same for both nonlinear elasticity and nonlinear creep. For a two-dimensional
punch Arutiunian (1959) finds

r (an; 1) r (512) sin (r/2n) P(r)

p(x,1)= arl’? (1 __xz/az)l/zn (6.76)
where I" denotes a Gamma function, and for the axi-symmetric punch
Kuznetsov (1962) shows that

2n—1 P(:
p(r, )= ( ) A (6.77)

2nna* (1 —r*/a*)V/?"
For a 1inear elastic material, where n = 1, both expressions reduce as expected
to the elastic pressure on the base of a rigid punch, i.e. to equations (2.64) and
(3.34). In the other extreme of a perfectly plastic material, #n - o0, and the
contact pressures given by equations (6.76) and (6.77) become uniform. This
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agrees exactly with the slip-line field solution for a two-dimensional punch in
which the pressure is 2.97Y, where Y is the yield stress in tension or compression.
For a punch of circular plan-form the slip-line field solution gives a pressure
which peaks slightly towards the centre of the punch (see Fig. 6.10), with an
average value p, = 2.857,

With an indenter whose profile is curved rather than flat the behaviour in
steady creep is different from that of nonlinear elasticity because (a) the
displacements imparted to the surface vary over the face of the indenter whereas
the velocity of the indenter is uniform and (&) the contact area grows during
the indentation so that material elements do not experience proportional loading.
In these circumstances the analysis by Arutiunian’s method becomes very
involved while remaining approximate through the use of superposition. An
alternative approximate treatment of the contact of spheres which is attractive
by its simplicity has been suggested by Matthews (1980). We shall look first at
a nonlinear material which deforms according to equation (6.73), as shown in
Fig. 6.25. Guided by Kuznetsov’s result for a rigid punch (eq. (6.77)), the
pressure distribution is assumed to be given by:

2n+1
p(r)= 7 pm(1 —72/‘12)1/2n (6.78)

For a linear elastic incompressible material (n = 1) this distribution reduces to
that of Hertz for which p,, = 16E2/97R (egs. (4.21), (4.22) and (4.24)). Putting
n = o in equation (6.78) gives a uniform pressure. For a perfectly plastic
material the pressure distribution given by the slip-line field solution, shown

in Fig. 6.10, is roughly uniform with p, = 3Y. Both of these values of p,,,
corresponding to the extreme values of n (1 and o), are realised if we write

P 6n00( 3a )”"

——:p =
na® N |

97TR€0

since, in the constitutive equation (6.73), 6o /€' = E whenn = 1 and

0o = Y when n - o=, It is reasonable to suppose that equation (6.79) then gives
a good approximation to the relationship between load P and contact size

a for intermediate values of . In his study of hardness, Tabor (1951) suggested
the empirical relationship '

Pm =~ 3Yr (6.80)
where Yy is the stress at a representative strain eg in a simple compression test.

For a material with power law hardening, Yg = 0¢(eg /€0)*/". Substituting for
YR in (6.80) enables e to be found from equation (6.79), thus:

8 ( 2n )"a (6.81)
e = — -_— .
R onr\on+1) R

(6.79)
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which varies from 0.188a/R to 0.171a/R as n varies from 1 to c°. The variation
with # is small and the values are reasonably consistent with Tabor’s empirical
result: eg &~ 0.2(a/R), independent of the precise shape of the stress-strain
curve.

The penetration § of the indenter into the half-space is of interest. Based on
the experimental data of Norbury & Samnuel (1928) Matthews proposes the
expression:

" 2(n—1) d2
6= (2 + 1) R (652)
n

Thus § varies from the elastic value a*/R whenn = 1 to 0.3682%/R when

n = which is in good agreement with the perfectly plastic analysis of
Richmond et al. (1974). When & > 4?/2R the periphery of the indentation
‘sinks in’ below the surface of the solid, as described in §3. This occurs for low
values of #, i.e. with annealed materials. When » exceeds 3.8, § <a?/2R and
‘piling up’ occurs outside the edge of the contact.

We turn now to penetration by a spherical indenter under conditions of
power law creep governed by equation (6.74). Matthews assumes that the
pressure distribution is the same as that found by Kuznetsov for a flat-faced
punch (eq. (6.77)), i.e.

2n—1
p(r,0)= N Pm(OD(1—7?/a®)t2" (6.83)

For n = 1, equation (6.74) describes a linear viscous material of viscosity
1 = 0o/3€éo = 1/3B. Spherical indentation of such a material was analysed in
85, where it was shown (eq. (6.67)) that

8na
p(r, 1) = — (1 =rfa) ™ (6.84)
nR
By differentiating equation (6.66) with respect to time we get
P(r) 16n 8né
H=——F=—a= ——— 6.85
Pm () na® 7R T(R6)Y? (6:85)

For n = oo, the nonlinear viscous material also behaves like a perfectly plastic
solid of yield stress Y = gy, so that p, ~ 3Y.

If, for the nonlinear material, we now write
P(r) 6no, [ 8 ) 1/n

Z‘ —_—_— . =
Pm = =i (917Ré0

Equations (6.83) and (6.86) reduce to (6.84) and (6.85) whenn = 1 and
00/3€éo = n, and reduce to p,, = constant = 3Y when n = oo, Making use of the

(6.86)
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relationship (6.82) the velocity of penetration & can be written

. 2n \"t
6(t)=2(6/R)”2(2~n—;—1) a(r) (6.87)

where 4 is related to the load by equation (6.86). In a given situation either the
load history P(¢) or the penetration history &(¢) would be specified, whereupon
equations (6.86) and (6.83) enable the variations in contact size a() and contact
pressure p(r, t) to be found if the material parameters aq, €0 and n are known.



7

Tangential loading and sliding contact

7.1 Sliding of non-conforming elastic bodies

In our preliminary discussion in Chapter 1 of the relative motion and
forces which can arise at the point of contact of non-conforming bodies we
distinguished between the motion described as sliding and that described as
rolling, Sliding consists of a relative peripheral velocity of the surfaces at their
point of contact, whilst rolling involves a relative angular velocity of the two
bodies about axes parallel to their tangent plane. Clearly rolling and sliding can
take place simultaneously, but in this chapter we shall exclude rolling and
restrict our discussion to the contact stresses in simple rectilinear sliding. The
system is shown in Fig. 7.1. A slider, having a curved profile, moves from right
to left over a flat surface. Following the approach given in Chapter 1, we regard
the point of initial contact as a fixed origin and imagine the material of the
lower surface flowing through the contact region from left to right with a steady
velocity V. For convenience we choose the x-axis parallel to the direction of
sliding.

Fig. 7.1. Sliding contact.
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A normal force P pressing the bodies together gives rise to an area of contact
which, in the absence of friction forces, would have dimensions given by the
Hertz theory. Thus in a frictionless contact the contact stresses would be
unaffected by the sliding motion. However a sliding motion, or any tendency
to slide, of real surfaces introduces a tangential force of friction Q, acting on
each surface, in a direction which opposes the motion. We are concerned here
with the influence of the tangential force Q upon the contact stresses. In this
section we shall imagine that the bodies have a steady sliding motion so that
the force Q represents the force of ‘kinetic friction’ between the surfaces. In the
next section we shall investigate the situation of two bodies, nominally with no
relative velocity, but subjected to a tangential force tending to cause them to
slide. The force Q then arises from ‘static friction’; it may take any value which
does not exceed the force of ‘limiting friction” when sliding is just about to occur.

The first question to consider is whether the tangential traction due to
friction at the contact surface influences the size and shape of the contact area
or the distribution of normal pressure. For the purposes of calculating the
elastic stresses and displacements due to the tangential tractions, we retain the
basic premise of the Hertz theory that the two bodies can each be regarded as an
elastic half-space in the proximity of the contact region. The methods of analysis
given in Chapter 2 and 3 are then appropriate. From equation (2.22) in two
dimensions and from equation (3.75) in three dimensions we note that the
normal component of displacement at the surface i, due to a concentrated
tangential force Q is proportional to the elastic constant (1 — 2»)/G. The tangen-
tial tractions acting on each surface at the interface are equal in magnitude and
opposite in direction, viz.:

9:(x,») = —q2(x,) (7.1)
Hence the normal displacements due to these tractions are proportional to the
respective values of (1 — 2v)/G of each body and are of opposite sign:

Gy _ G

1— 2, Uale,y) === 2w,
It follows from equation (7.2) that, if the two solids have the same elastic
constants, any tangential traction transmitted between them gives rise to equal
and opposite normal displacements of any point on the interface. Thus the
warping of one surface conforms exactly with that of the other and does not
disturb the distribution of normal pressure. The shape and size of the contact
area are then fixed by the profiles of the two surfaces and the normal force,
and are independent of the tangential force. With solids of different elastic
properties this is no longer the case and the tangential tractions do interact with

Uzp(x,¥) (7.2)
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the normal pressure. The effect is entirely analogous to the interaction between
normal and tangential tractions in normal contact of dissimilar solids discussed
in §5.4. However, as we shall see later, it transpires that the influence of tangen-
tial tractions upon the normal pressure and the contact area is gehera]ly small,
particularly when the coefficient of limiting friction is appreciably less than
unity. In our analysis of problems involving tangential tractions, therefore, we
shall neglect this interaction and assume that the stresses and deformation

due to (a) the normal pressure and (b) the tangential traction are independent
of each other, and that they can be superposed to find the resultant stress.

We must now prescribe the relationship between the tangential traction and
the normal pressure in sliding contact. It is usual to assume that Amontons’ law
of sliding friction applies at each elementary area of the interface, so that

laCx,»)I 10

= —_—— 7.3
p(x,y) P g (7.3)

where u is a constant coefficient of kinetic friction whose value is determined
by the materials and the physical conditions of the interface. Some indication
of the circumstances which account for the validity of Amonton’s law with
dry surfaces can be found in Chapter 13. It is also found to be approximately
valid when non-conforming sliding surfaces are separated by thin lubricating
films. Experimental confirmation that the tangential traction is distributed in
direct proportion to normal pressure is provided by photo-elastic work of
Ollerton & Haines (1963) using large models of araldite epoxy resin. For a full
discussion of the physics of friction and the conditions which determine the
value of the coefficient of friction, the reader is referred to Bowden & Tabor
(1951, 1964).

We are now in a position to examine the elastic stress distributions in sliding
contact. The two-dimensional case of a cylinder sliding in a direction perpen-
dicular to its axis has been studied in more detail than the corresponding three-
dimensional case. We will look at the two-dimensional problem first:

(a) Cylinder sliding perpendicular to its axis
If the cylinder and the plane on which it slides have the same elastic
properties, we have seen that the width of the contact strip 2e and the normal
pressure distribution are given by the Hertz theory (equations (4.43)-(4.45)), i.e.
2P
p(x) — — az _x2)1/2
na
where P is the normal force per unit axial length pressing the cylinder into
contact with the plane. Then, assuming Amonton’s law of friction (equation
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(7.3)) the tangential traction is
2uP
gx)=7 = (a® —x?*)12 (7.4

where the negative sign is associated with a positive velocity ¥ as shown in

Fig. 7.1. The stress components within both the cylinder and the plane are now
given by equations (2.23). These integrals have been evaluated by several
workers (McEwen, 1949; Poritsky, 1950; Smith & Liu, 1953; Sackfield & Hills,
1983c). A short table of values is given in Appendix 4. From equations (2.23),
since g(x) and p(x) are in proportion, it may be seen that there are some
analogies between the stresses due to the tangential traction and those due to
the normal traction, which may be expressed by:

AN

do Po

(7.52)

and
(Txz)q _ (gﬂp
do Do
where g = up, is the tangential traction at x = 0, and the suffixes p and g refer
to stress components due to the normal pressure and tangential traction acting
separately. Hence (oz)q and (sz)q can be found directly from the expressions
for (7,), and (0, ) given by equations (4.49). The direct stress parallel to the

surface (0, ), , however, must be evaluated independently. In the notation of
equations (4.49) it may be shown that

(7.5b)

o 22— m? t
(ox)q=;—{n (2—m2 T —2x (7.6)
At the surface z = 0 the expression for the direct stress reduces to:
—2qox/a, x1<a (7.7a)
5.), = x /x? 172
(0x)q —240{4(—2 —1) } x| >a (7.7)
a \a

The surface stresses in the moving plane (Fig. 7.1) are shown in Fig. 7.2. The
tangential traction acting on the moving plane is negative so that the direct
stress reaches a maximum compressive stress —2g, at the leading edge of the
contact area (x = —a) and a maximum tension 2q, at the trailing edge (x = a).
We recall that the normal pressure gives rise to an equal compressive stress at

the surface, (0y), = —p(x), within the contact region and no stress outside.
Hence, whatever the coefficient of friction, the maximum resultant tensile stress
in sliding contact occurs at the trailing edge with the value 2up,.

+ A short table of values is given in Appendix 4 (p. 430).
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The onset of plastic yield in sliding contact will be governed (using the
Tresca yield criterion) by the maximum value of the principal shear stress
throughout the field. Contours of 7, in the absence of friction are shown in
Fig. 4.5. The maximum value is 0.30p, on the z-axis at a depth 0.78a. Contours
of 7; due to combined normal preSsure and tangential traction, taking u = 0.2,
are plotted in Fig. 7.3. The maximum value now occurs at a point closer to the
surface. The position and magnitude of the maximum principal shear stress may
be computed and equated to the yield stress & in simple shear to find the contact
pressure pg for first yield (by the Tresca yield criterion). This is shown for
increasing values of the coefficient of friction in Fig. 7.4. The frictional traction
also introduces shear stresses into the contact surface which can reach yield if
the coefficient of friction is sufficiently high. The stresses in the contact surface

Fig. 7.2. Surface stresses due to frictional traction ¢ = ¢(1 —xz/al)m.

3 /40

Fig. 7.3. Contours of the principal shear stress 7, beneath a sliding
contact, Qx = (.2P.




Sliding of non-conforming elastic bodies 207

due to both pressure and frictional tractions are

0x =—po{(1 —x?/a®)!'* + 2ux/a} , (7.8a)

0, = —po(1 —x%/a?)'"? (7.8b)

Gy = —2vpo{(1 —x*/a®)'? + yx/a} (7.8¢)

7—'xz = _#Po(l -x2/a2)”2 (7-8d)
The principal shear stress in the plane of the deformation is

= %{(Ux - 02)2 + 4sz2}1/2 =UPo (79)

This result shows that the material throughout the width of the contact surface
will reach yield when

polk = 1/u (7.10)
Yield may also occur by ‘spread’ of the material in the axial direction although
such flow must of necessity be small by the restriction of plane strain. Calcula-
tions of the contact pressure for the onset of yield in sliding contact have been
made by Johnson & Jefferis (1963) using both the Tresca and von Mises yield
criteria; the results are shown in Fig. 7.4. For low values of the coefficient of
friction (i < 0.25 by Tresca and u < 0.30 by von Mises) the yield point is first
reached at a point in the material beneath the contact surface. For larger values
of u yield first occurs at the contact surface. The Tresca criterion predicts lateral
yield for 0.25 <u < 0.44; but when u > 0.44 the onset of yield is given by
equation (7.9).

In the above discussion the tangential traction has been assumed to have no
effect upon the normal pressure. This is strictly true only when the elastic con-
stants of the two bodies are the same. The influence of a difference in elastic
constants has been analysed by Bufler (1959) using the methods of §2.7. The
boundary condition g(x) = up(x) is of class IV, which leads to a singular integral
equation of the second kind (2.53). Solving the integral equation by (2.55) and
(2.56), the surface traction within the contact area is found to be:

uE* a+x
2R(l + 62:‘12)1/2(

where § is a measure of the difference in the elastic constants defined in equatjon
(5.3) and

Y
q(x) = ) (@ —x*)1? (7.11)

a—x

y =—(1/n) tan™* (Bu) ~ —Bu/n (7.12)
provided that Su is small. The semi-width of the contact strip is given by
1  4PR
at= S —o (7.13)
1—4y* E*

The contact strip is no longer symmetrically placed; its centre is displaced from
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the axis of symmetry by a distance

Xo = 2va (7.14)
Bufler also finds the distribution of direct stress g, in the surface. When the
elastic constants of the two bodies are equal, § is zero and hence vy vanishes.
The contact area is then seen to be symmetrical and of a size given by the Hertz
theory; the pressure distribution also reduces to that of Hertz. Values of § for
various combinations of materials are given in Table 5.1, The values do not
exceed 0.21. Since coefficients of friction rarely exceed 1.0, the maximum
likely vatue of || is about 0.06. The distribution of surface traction and contact
area have been calculated from equations (7.11)~(7.13), taking y = 0.06, for
the arrangement in Fig. 7.1 in which it has been assumed that the lower surface

Fig. 7.4. Effect of sliding friction on the contact pressure for first yield
and shakedown (see §9.2). Large-dashed line - line contact, first yield
(Tresca). Chain line - line contact, first yield (von Mises). Solid line ~
line contact, shakedown (Tresca). Small-dashed line — point contact,
first yield (von Mises).
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is the more elastic (i.e.  + ve and u — ve). The results are shown in Fig. 7.5.

The effect of the tangential traction is to shift the centre of the contact region
by a distance x, = 0.12« towards the trailing edge; the contact width is increased
by 0.8% and the centre of pressure moves towards the trailing edge. However the
comparison with the Hertz pressure distribution shows that the effect is small
even for an extreme value of the product Su. For more representative values of
Bu the influence of frictional traction upon the contact area and pressure distri-
bution is negligible.

(b) Sliding sphere

We now consider a sphere, carrying a normal load P, which slides over
a plane surface in a direction chosen parallel to the x-axis. Neglecting any inter-
action between normal pressure and tangential traction arising from a difference
in elastic constants of the two solids, the size of the circular contact area and the
pressure distribution are given by the Hertz theory (equations (3.39), (4.22) and
(4.24)). Amontons’ law of friction specifies the tangential traction to be

q(r) = M — )i (7.15)
2na®
acting parallel to the x-axis everywhere in the contact area,
We wish to find the stress components in the solid produced by the surface
traction, In principle they may be found by using the stress components due to
a concentrated force, given by equations (3.76), weighted by the distribution

Fig. 7.5. Influence of a difference in elastic constants on the pressure
and traction distribution in sliding contact, for§ = 0.2, u =1 (y = 0.06).
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(7.15) and integrated throughout the contact area. However such integrations
can only be performed numerically. A different approach has been taken by
Hamilton & Goodman (1966), by extending a method introduced by Green
(1949) for the stress analysis of a normally loaded half-space. They computed
stresses in the x—z plane and at the surface (x-y plane) for values of u = 0.25
and 0.50, (v = 0.3). Explicit equations for calculating the stress components
at any point in the solid have since been given by Hamilton (1983) and by
Sackfield & Hills (1983c¢).

The von Mises criterion has been used to calculate the point of first yield.
As for a two-dimensional contact, the point of first yield moves towards the
surface as the coefficient of friction is increased; yield occurs at the surface
when u exceeds 0.3. The values of the maximum contact pressure (pg)y to
initiate yield have been added to Fig. 7.4 from which it will be seen that they
are not significantly different from the two-dimensional case.

The normal contact of elastic spheres introduces a radial tension atr =a
of magnitude (1 —2v)p,/3 = 0.13p,. The effect of the tangential traction is to
add to the tension on one side of the contact and to subtract from it at the
other. The maximum tension, which occurs at the surface point (—a, 0) rises
to 0.5pe and 1.0p, for u = 0.25 and 0.5 respectively. This result is again
comparable with the two-dimensional case.

The analysis has been extended to elliptical contacts by Bryant & Keer
(1982) and by Sackfield & Hills (1983b) who show that the contact pressure
for first yield (po)y is almost independent of the shape of the contact ellipse.

7.2 Incipient sliding of elastic bodies

A tangential force whose magnitude is less than the force of limiting
friction, when applied to two bodies pressed into contact, will not give rise to
a sliding motion but, nevertheless, will induce frictional tractions at the contact
interface. In this section we shall examine the tangential surface tractions which
arise from a combination of normal and tangential forces which does not cause
the bodies to slide relative to each other,

The problem is illustrated in Fig. 7.6. The normal force P gives rise to a contact
area and pressure distribution which we assume to be uninfluenced by the exis-
tence of the tangential force Q, and hence to be given by the Hertz theory. The
effect of the tangential force Q is to cause the bodies to deform in shear, as
indicated by the distorted centre-line in Fig. 7.6. Points on the contact surface
will undergo tangential displacements iz, and it,, relative to distant points 7} and
T, in the undeformed region of each body. Clearly, if there is no sliding motion
between the two bodies as a whole, there must be at least one point at the inter-
face where the surfaces deform without relative motion; but it does not follow
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that there is no slip anywhere within the contact area. In fact it will be shown
that the effect of a tangential force less than the limiting friction force (Q < uP)
is to cause a small relative motion, referred to as ‘slip’ or ‘micro-slip’, over part
of the interface. The remainder of the interface deforms without relative motion
and in such regions the surfaces are said to adhere or to ‘stick’.

To proceed with an analysis we must consider the conditions governing
‘stick’ and ‘slip’. In Fig. 7.6, A, and A, denote two points on the interface
which were coincident before the application of the tangential force. Under
the action of the force, points in the body such as T; and T, distant from the
interface, move through effectively rigid displacements 8y, 6,7 and §,,,8,,
while 4, and 4, experience tangential elastic displacements ityy, ity and it .5,
iy, relative to Ty and T, . If the absolute displacements of A, and 4, (i.e. relative
to O) are denoted by sy, 5,1 and 5,5, Sy2, the components of slip between 4,
and A, may be written

Sx = Sx1 — Sx2 = (Ux1— 8x1) — (Uxa — 8x2)
= (lxg —Ux2) = (851 —8x2) (7.16)
A similar relation governs the tangential displacements in the y-direction. If the
points 4, and A4, are located in a ‘stick’ region the slip s, and s, will be zero so

Fig. 7.6
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that
Uxl ~lxy = (81— 8x2) =64 (7.17a)
Uy —Uyy = (8,1 —8,2) =6, (7.17b)
We note that the right-hand sides of equations (7.17) denote relative tangential
displacements between the two bodies as a whole under the action of the tangen-
tial force. Thus &, and §,, are constant, independent of the position of 4, and
A, , within the ‘stick’ region. Further, if the two bodies have the same elastic
moduli, since they are subjected to mutually equal and opposite surface trac-
tions, we can say at once that iy, = —ily; and it 5 = —u,;. The condition of no
slip embodied in equations (7.17) can then be stated: all surface points within
a ‘stick’ region undergo the same tangential displacement. The statement is also
true when the elastic constants are different but the overall relative displace-
ments §, and §,, are then divided unequally between the two bodies according to
equation (7.2).
At points within a stick region the resultant tangential traction cannot exceed
its limiting value. Assuming Amonton’s law of friction with a constant coefficient
U, this restriction may be statea:

lqCe, ) <pip(x,»)l (7.18)
In a region where the surfaces slip, the conditions of equations (7.17) are
violated, but the tangential and normal tractions are related by

lgCe, )1 = plp(x, )l (7.19)
In addition, the direction of the frictional traction ¢ must oppose the direction
of slip. Thus

qx,y) __ sx,y) (7.20)
lgCe, )1 Is(x, )]

Equations (7.17)-(7.20) provide boundary conditions which must be satisfied
by the surface tractions and surface displacements at the contact interface.
Equations (7.17) and (7.18) apply in a stick region and equations (7.19) and
(7.20) apply in a slip region. Difficulty arises in the solution of such problems
because the division of the contact area into stick and slip regions is not known
in advance and must be found by trial. In these circumstances a useful first step
is to assume that no slip occurs anywhere in the contact area. Slip is then likely
to occur in those regions where the tangential traction, so found, exceeds its
limiting value,

A few particular cases will now be examined in detail,

{a) Two-dimensional contact of cylinders - no slip
We shall first consider two cylinders in contact with their axes parallel
to the y-axis, compressed by a normal force P per unit axial length, to which
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a tangential force Q per unit length (<uP) is subsequently applied (see Fig. 7.7).
The contact width and the pressure distribution due to P are given by the Hertz
theobry. These quantities are assumed to be unaffected by the subsequent appli-
cation of Q. In view of the difficulty of knowing whether Q causes any micro-
slip and, if so, where it occurs, we start by assuming that the coefficient of
friction is sufficiently high to prevent slip throughout the whole contact area.
Thus the complete strip —a < x <z is a ‘stick’ area in which the condition of
no-slip (eq. (7.17)) applies, i.e.

lyy—Uyy =constant=§,, —a<x<a (7.21)

The distribution of tangential traction at the interface is thus one which will give
rise to a constant tangential displacement of the contact strip. For the purpose
of finding the unknown traction each cylinder is regarded as a half-space to
which the results of Chapter 2 apply. The analogous problem of finding the
distribution of pressure which gives rise to a constant normal displacement, i.e.

Fig. 7.7. Contact of cylinders with their axes parallel. Surface tractions
and displacements due to a tangential force @ < uP. Curve A - no slip,
eq. (7.22); curve B - partial slip, eq. (7.28).
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the pressure on the face of a flat frictionless punch, has been discussed in §2.8./
The pressure is given by equation (2.64). Using the analogy between tangential
and normal loading of an elastic half-space in plane strain we can immediately
write down the required distribution of tangential traction, viz.

0

q(x) = m
This traction acts on the surface of each body in opposing directions so that
il,; and iz, will be of opposite sign and therefore additive in equation (7.21).
The actual values of iiy; and 4,4 and hence the value of §, as in all two-
dimensional problems, depend upon the choice of the reference points T;

and 7.
" The traction given by (7.22) is plotted in Fig. 7.7 (curve A). It rises to
a theoretically infinite value at the edges of the contact. This result is not
surprising when it is remembered that the original assumption that there should
be no slip at the interface effectively requires that the two bodies should behave
as on_e_z_.jT he points x = ta then appear as the tips of two sharp deep cracks in
the sides of a large solid block, where singularities in stress would be expected.
It is clear that these high tangential tractions at the edge of the contact area
cannot be sustained, since they would require an infinite coefficient of friction.
There must be some micro-slip, and the result we have just obtained suggests
that it occurs at both edges of the contact strip. We might expect a ‘stick’
region in the centre of the strip where the tangential traction is low and the
pressure high. This possibility will now be investigated.

(7.22)

(b) Contact of cylinders - partial slip
The method of solution to the problem of partial slip was first
presented by Cattaneo (1938) and independently by Mindlin (1949).
If the tangential force Q is increased to its limiting value uP, so that the bodies
are on the point of sliding, the tangential traction is given by equation (7.4), viz.
q'(x) = ppo(1 —x*/a®)"? (7.23)
where py = 2P/na.
The tangential displacements within the contact surface due to the traction
can be found. By analogy with the normal displacements produced by a Hertzian
distribution of normal pressure, we conclude that the surface displacements are

distributed parabolically within the contact strip. If no slip occurs at the mid-
point x = 0, then we can write

L—‘;cl: 5;1_(1 -—V12)up0x2/aE1 (7.24)
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and a similar expression of opposite sign for the second surface. These distri-
butions of tangential displacement satisfy equation (7.21) at the origin only;
elsewhere in the contact region the surfaces must slip.

- We now consider an additional distribution of traction given by

4"(x) = _Z_Hpo(l —x¥c?)? (7.25)

acting over the strip —c < x < ¢ (¢ <a), as shown in Fig. 7.7. The tangential
displacements produced by this traction within the surface —c < x < ¢ follow
by analogy with equation (7.24), viz.:

c
g1 =—by +'a‘(1 — v )upox®[cEy (7.26)

If we now superpose the two tractions ¢ and ¢”, the resultant displacements
within the central strip —c < x <X ¢ are constant, as shown in Fig. 7.7.

Uy = oy + 1y = 833+ 83 = 8y (7.27a)
and for the second surface to which an equal and opposite traction is applied
Uyr = —Ox2 (7.27b)

Substitution for &, and &, in equation (7.21) shows that the condition of
no-slip is satisfied in the strip —¢ < x <X c. Furthermore in this region the
resultant traction is given by

a(x) =q'(x) + q"(x) = upo {(@* —x*)'"* — (c* —x*)"?}/a (7.28)
which is everywhere less than up. Thus the two necessary conditions that the
central strip should be a ‘stick’ region are satisfied. At the edges of the contact,
c<lx|<a,q(x)= up(x), as required in a slip region. It remains to prove that
the direction of the traction opposes the direction of slip in these regions as
required by equation (7.20). To do this we require the surface displacements in
these regions. The surface displacements due to an elliptical distribution of
tangential traction have been evaluated by Poritsky (1950), from which i
and i1y throughout the surface are plotted (dotted) in Fig. 7.7. From equation
(7.16) the slip s, is given by

Sx = (axl - ax2) — 8,

From the figure it is clear that (i1, — i1, ) is less than §, in each slip region, so
that s, is negative in each region. This is consistent with the positive traction

g acting on body (1). We have shown, therefore, that the resultant distribution
of tangential traction shown in Fig. 7.7 produces surface displacements which
satisfy the necessary conditions in a central stick region —¢ < x < ¢ and two
peripheral slip regionsc < |x| <a.
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The size of the stick region is determined by the magnitude of the tangential
force

0- j _ 4(x) dx = _aaq'(x) ax + f _ccq"(x) dx

C
=uP—— P
a
so that
1/2
(c;: (1 —#%) (7.29)

The physical behaviour is now clear. If, keeping P constant, Q is increased
steadily from zero, micro-slip begins immediately at the two edges of the contact
area and spreads inwards according to equation (7.29). As Q approaches pP,

¢ approaches zero and the stick region shrinks to a line at x = 0. Any attempt

to increase Q in excess of uP causes the contact to slide.

The stresses within either solid due to the elliptical distribution of traction
q'(x) have been discussed in the last section. The stresses due to a force Q less
than uP can be found by superposing a distribution of stress due to q"(x)
which is similar in form but is reduced in scale.

(c) Contact of spheres - no slip

Two spherical bodies pressed into contact by a normal force P have
a circular area of contact whose radius is given by equation (4.22) and an ellip-
soidal pressure distribution given by equation (3.39). If a tangential force
Q, applied subsequently, causes elastic deformation without slip at the inter-
face, then it follows from equation (7.17) that the tangential displacement of all
points in the contact area is the same. If the force Q is taken to act parallel to
the x-axis, then it follows from symmetry that this tangential displacement must
also be parallel to the x-axis. The distribution of tangential traction which
produces a uniform tangential displacement of a circular region on the surface
of an elastic half-space has been found in Chapter 3. The traction (equation
(3.82)) is radially symmetrical in magnitude and everywhere parallel to the
X-axis:

4x(r) =qo(1 —r*[a®)*"? (7.30)

from which g = Q. /2na®. The corresponding displacement, which, in this case,
can be precisely defined, is given by equation (3.86¢) i.e.

_w(2—v)
46

qoa (7.31)

Uy
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Substituting into equation (7.17) gives the relative tangential displacement
between distant points 7; and 73 in the two bodies:

5x=l—lxl_l_¢x2:%(2 V1+2 V2)
8\ G G,
This relationship is shown by the broken line in Fig. 7.8; the tangential displace-
ment is directly proportional to the tangential force. This is unlike the normai
approach of two elastic bodies which varies in a nonlinear way with normal
load because the contact area grows as the load is increased.

The tangential traction necessary for no slip rises to a theoretically infinite
value at the periphery of the contact circle so that some micro-slip is inevitable
at the edge of contact.

(7.32)

(d) Contact of spheres - partial slip

Cattaneo’s technique can also be applied to the case of spheres in
contact. The axial symmetry of the tangential traction given by equation (7.30)
suggests that the ‘stick’ region in this case might be circular and concentric
with the contact circle. On the point of sliding, when only the two points in
contact at the origin are ‘stuck’, the distribution of traction is

q'(x,y) =up(x,y) = ppo(1 —r’/a*)!"? (7.33)
The tangential displacements within the contact circle, » < a, are then given by

Fig. 7.8. Tangential displacement §, of a circular contact by a tangential
force Oy ; (A) with no slip, (B) with slip at the periphery of the contact.
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equations (3.91), viz.:

m
iy = HPo {42 —v)a® + (4 —v)x? + (4 — 3v)y?} (7.34a)
32Ga
and
y _ THPo
i, = 2vx (7.34b
Y~ 3260 )

If we now consider a distribution of traction
c
q"(x,y)=——Po(1 _r2/c2)1/2 (735)
a .

acting over the circular area r < ¢, by analogy the tangential displacements
within that circle are

_n __CTHPo

== {42 —v)c* + (4 —v)x? + (4 = 3v)y?} (7.36a)
a 32Gc
¢ TP
7 = 2vx 7.36b
Y. a 32Ge 4 ( )

The resultant displacements in the circle, » < ¢, are given by adding equations
(7.34) and (7.36), with the result:

o _THPo

¥ 8Ga

u,=0 (7.37b)

We see that these displacements satisfy the condition for no-slip (7.17) within
the circle ¥ < ¢, with the result that

3uP (2 —vy 2—w,\ a® —c?
5, = —“~P< |+ 2) (7.38)
16\ G G, 3

a
Thus the stick region is the circle of radius ¢ whose value can be found from the
magnitude of the tangential force.

2—v)(@*—c?) (7.37a)

a c
0, =J~ 2nq'r dr —f 2nq"r d&r = uP(1 —c3/a®)
0

0
whence

i

C= (1o (7.39)

The\'tnzihgential traction acts parallel to the x-axis at all points; it is given by
q' (eq. (7.33)) in the annulus ¢ <7 <z and by the resultant of ¢’ and ¢" (which
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is less than up) in the central circle » < ¢. To confirm that the slip conditions
are satisfied in the annulus ¢ < r < g, the displacements in that annulus due to
q" are required. These are given in equations (3.92). The relative slip at any
point in the annulus is then found from equation (7.16) which, in this case,
becomes

Sy = (g + i) + (g + l132) — 8 (7.40a)
and

sy = (@yy + dy1) + @y, + iy5) (7.400)
where 8. is given by (7.38), it and i}, are given by (7.34), &1, and iz}, are given
by (3.92). It is clear from the form of equations (3.92b) that, when substituted
into equation (7.40b), the slip in the y-direction will not vanish, i.e. s, # 0. On
the other hand the frictional traction in the slip annulus, ¢’, is assumed to be
everywhere parallel to the x-axis, so that the condition that the slip must be in
the direction of the frictional traction is not precisely satisfied. However, we
note that the ratio of s, to s is of the order v/(4 — 2v) = 0.09 so that the
inclination of the resultant slip direction to the x-axis will not be more than
a few degrees. We conclude, therefore, that the distribution of tangential
traction which has been postulated, acting everywhere parallel to the tangential
force, is a good approximation to the exact solution.
[ As the tangential force is increased from zero, keeping the normal force
constant, the stick region decreases in size according to equation (7.39). An
annulus of slip penetrates from the edge of the contact area until, when
Q.. = uP, the stick region has dwindled to a s1ngle pomt at the origin and the
bodies are on the point of sliding. { gfe° ¢

The magnitude of the slip at a radius » w1th1n the annulus cSr<ais

found from equation (7.40). Neglecting terms of order v/(4 — 2v) this turns
out to be

3uP
s, ~ —(2—v
x 16Ga( )
2 c 2\ 2¢ c2\1?
X {(1 —Zsin™! —)(1 ~2- )+ =- (1 ——2) (7.41a)
T r r Tr r
5, %0 (7.41b)

The maximum value of this micro-slip occurs at the edge of the contact.
The relative tangential displacement of the two bodies is found by substituting
equation (7.39) into (7.38)

— —_ 2/3
6x=3£(2 - Vz) {1—(1-93‘-) } (7.42)
162\ G, G, uP
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This nonlinear expression is also plotted in Fig. 7.8. For very small values of
tangential force, when the slip annulus is very thin, it follows the linear relation-
ship for no-slip (eq. (7.32)). As Q approaches uP the tangential displacement
departs further from the no-slip solution until the point of sliding is reached.
On the point of sliding, the overall displacement & is just twice the relative slip
s, at the edge of the contact circle. Experimental measurements of the displace-
ment by Johnson (1955) substantiate equation (7.42).

It is instructive to compare the compliance of two spherical bodies to
tangential force with the compliance to normal force found from the Hertz
theory (eq. (4.23)). Since the normal displacement &, is nonlinear with load,
it is most meaningful to compare the rates of change of displacement with load.
For bodies having the same elastic constants, differentiating equation (4.23)
gives a normal compliance

ds, 2‘9(1—V2)2(1+ 1)1 1/3
¢ '\ g R, R, P}

(1-v)
= 7.43
2Ga ( )
The tangential compliance for small values of Q. is given by equation (7.32):
ds 2—vy
By _Q2Y) (7.44)
dgQ, 4Ga

So that the ratio of the tangential to normal compliance is (2 — »)/2(1 —v),
which varies from 1,17 to 1.5 as Poisson’s ratio varies from 0.25 to 0.5 and is
independent of the normal load. Thus the tangential and normal compliances
are roughly similar in magnitude,

Non-conforming surfaces of general profile will have an elliptical contact
area under normal load. Their behaviour under the action of a subsequently
applied tangential force is qualitatively the same as for spherical bodies. Micro-
slip occurs at the edge of the contact area and a stick area is found which is
elliptical in shape and which has the same eccentricity as the contact ellipse.
Expressions for the tangential displacement have been found by Mindlin (1949)
for the case of no-slip and by Deresiewicz (1957) for partial slip.

7.3 Simultaneous variation of normal and tangential forces

In the previous section we discussed the contact stresses introduced by
a steadily increasing tangential force into two bodies which were pressed into
contact by a normal force which was maintained constant. We saw that the
tangential force, however small, causes some slip to occur over part of the
contact area. The ‘irreversibility’ implied by frictional slip suggests that the
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final state of contact stress will depend upon the history of loading and not
solely upon the final values of the normal and tangential forces. Two examples
demonstrate that this is indeed the case.

In the problem of the last section, in which the normal force was kept constant
and the tangential force was increased, the annulus of slip spread inwards from
its inner boundary. If, on the other hand, the tangential force were subsequently
decreased this process would not simply reverse. Instead micro-slip in the
opposite direction would begin at the edge of the contact. Hence the state
of stress during unloading is different from that during loading, showing that
the process is irreversible. We shall return to this problem in the next section.

As a second example, consider the case where tangential force, having been
applied, is kept constant while the normal force is varied. Increasing the normal
force increases the area of contact, but leaves the tangential traction unchanged,
so that a traction-free annulus grows at the edge of the contact area. Decreasing
the normal force causes a reduction in the contact area and thereby releases
some of the tangential traction. In order to maintain equilibrium with the con-
stant tangential force the inner boundary of the annulus of slip must contract
until eventually, when P reaches the value Q/u, the contact will slide. Clearly,
in this example also, the behaviour in normal unloading is different from that
during loading.

It is evident from the foregoing discussion that the state of contact stress
between two bodies subjected to variations in normal and tangential load is
dependent upon the sequence of application of the loads, so that the surface
tractions can only be determined with certainty by following, in incremental
steps, the complete loading history. In a paper of considerable complexity
Mindlin & Deresiewicz (1953) have investigated the changes in surface traction
and compliance between spherical bodies in contact arising from the various
possible combinations of incremental change in loads: P increasing, Q increasing;
P decreasing, Q increasing; P increasing, Q decreasing; etc. In this way it is
possible to build up the stress and displacement variation throughout any
prescribed sequence of loading.

In this section we shall consider just one example of practical interest. Two
spherical bodies, pressed together initially by a normal force Py, are subsequently
compressed by an increasing oblique force F, which is inclined at a constant
angle a to the common normal. This loading is equivalent to increasing the
tangential load Q and the normal load P by increments in the constant propot-
tion tan « (see Fig. 7.9).

. The contact radius is determined by the current value of the total normal
load according to the Hertz theory (eq. (4.22)) which may be written

a®=KP (7.45)



Tangential loading and sliding contact 222

Due to the initial normal load

ao® = KP, (7.46)
During the subsequent application of the oblique force F, the increments in
tangential and normal force are dQ = dF sin « and dP = dF cos « respectively.

The incremental growth of the contact radius is given by differentiating (7.45),
thus

34% da = K dP =K dQ/tan « (7.47)
We will assume first that the increment of tangential force does not give rise to

any slip. The consequent increment in tangential traction is then given by
equation (7.30), viz.:

d
dg(r) = 2—7TQ; (@ —r*)1? (7.48)

To find the resultant distribution of tangential traction when the contact radius
has grown to the value a, we substitute for dQ in (7.48) from (7.47) and integrate
with respect to a.

For points originally within the contact circle the lower limit of integration is
ag, but points lying outside the original contact only start to acquire tangential
traction when the contact circle has grown to include them, so that the lower
limit of integration is then 7.

Fig. 7.9. Circular contact subjected to a steady normal load Pgand an
oblique force F. A -tan o < u (no micro-slip); B - tan a > u (slip in
annulus ¢ <r < a),

% et O et (]

ag ag —
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3tana &
0= | =
a0
3 tan o 23\1/2 2 251/2
P {@*—=rH"? —(ag* —r*)'?}, 0<r<a, (7.49a)
and
3tana {9
ry= a(@®>—r*)""? da
0= [ et =) ‘
3 tan «
= (@a?—r)'"?, ay<r<a (7.490)
iy
The normal pressure at this stage of loading is given by the Hertz theory:
3(Py+ Ficosa
py= LD (g
2may’
3 23172
= E_K(a -r ) (7.50)

For our original assumption of no slip to be valid, g(r) must not exceed up (r)
at any point. This condition is satisfied provided that

tan @ < (7.51)

Thus an oblique force inclined to the normal axis at an angle less than the angle

of friction produces no micro-slip within the contact area. The consequent
distribution of traction is shown in Fig. 7.9, curve A; it is everywhere less than
the limiting value up (r).

On the other hand, if the inclination of the force F exceeds the angle of
friction, some slip must occur and the above analysis breaks down. An annulus
of slip must develop at the edge of the contact circle. Within this annulus the
tangentlal traction will maintain its hmltmg value Hp (r) at all stages of the t
obhque loading. The inner ‘boundary of the annulus will lie within the or1g1nal

contact circle, its value being determined by the usual condition of equilibrium
with the tangential force, whence

c3 Fsin a
S (7.52)
@  wPy+ Fcosa)
This state of affairs is shown in Fig. 7.9, curve B. The stick region will vanish
(¢ = 0) and sliding will begin when

F= #ho (7.53)
cos & (tan a — )

1_._
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In the case where there is no initial compression the above results reduce to
the elementary rule of dry friction: if the inclination of the oblique force is less
than the angle of friction no slip will occur and, moreover, the distribution of
frictional stress at the interface is everywhere proportional to the normal contact
pressure, (¢ = p tan a); if the inclination of the force exceeds the angle of
friction, sliding begins at once and the frictional traction is everywhere equal

to its limiting value (g = up).

7.4 Oscillating forces

In this section we examine contacts which are compressed by a steady
mean normal load P, while being subjected to an oscillating force of prescribed
amplitude. It will be taken for granted that the magnitude of the oscillating
force is insufficient to cause the two surfaces in contact to separate or to slide
at any instant during the loading cycle.

We shall consider first an oscillating tangential force of amplitude +Q,
applied to spherical surfaces in contact. Since the normal force remains constant
at Py, the contact area and the normal pressure will remain constant and as given
by Hertz. The first application of Q in a positive direction will cause micro-slip
in the annulus ¢ <r < a, where

cla=(1— QluPo)'?
in the manner discussed in §2. The distribution of tangential traction is shown
by curve 4 in Fig. 7.10(a); it reaches its limiting value in the positive sense in
the annulus of slip. The tangential displacement of one body relative to the
other is given by equation (7.42), and shown by OA in Fig. 7.10(b). At point
A on this curve Q = +Q, . The tangential force now begins to decrease, which
is equivalent to the application of a negative increment in Q. If there were no
slip during this reduction, the increment in tangential traction would be negative
and infinite at the edge of the contact area. Hence there must be some negative
slip immediately unloading starts and the tangential traction near to the edge
must take the value g(r) = —up(r). During the unloading the reversed slip
penetrates to a radius ¢’ and, within this radius, there is no reversed slip. The

increment in tangential traction due to unloading, by Cattaneo’s technique,
is therefore

3
Aq=—22£§(a2—r2)”2, c'<r<a (7.544)
ma
and
3
Ag =2 2—“P§ {@—=r)Y2—("?=r*)'?}, r< (7.54b)
na
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Fig. 7.10. Circular contact subjected to a steady normal load Py and an
oscillating tangential load of amplitude Q,. (¢) Traction distributions at
A(Q=0,);B(Q=0)and C(Q =—0,). (b) Load-displacement cycle.
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The resultant traction at a point on the unloading curve is then given by adding
this increment to the traction at A with the result:

3uP,
—2——;’ @—r)"?, '<r<a (7.55a)
ma
3uP
g=1{- 2——;’ {@=r)2 =2 —r)V2), e<r<c (7.55b)
ma
3
_ 2;1.P2 {@ =) =2 —PY2 + (2 —2)V2}, r<e
ma

(7.55¢)
as shown by curve B in Fig. 7.10(a). The radii of the stick regions are found
from equilibrium of the traction distribution given above with the applied force.
At point 4

Q.

7 =1—c¢>/d® (7.56)
0
During unloading
Q 0. AQ
= =2 2= (1—c3®)—2(1—c"%a?) 7.57
wp, "k, wp, eI 7

which fixes the extent of reversed slip ¢’/a. At point B, when the tangential
load is removed, Q = 0, so that

?l® =31 +c /) (7.58)
The tangential displacement during unloading is found using equation (7.38),
viz.:

§=6,—A8
3}1P0(2""V1 2_112)
= 2 () @ e 2 =)
1603 G1 G2 (
3 2—py; 2—v —Q0\*?
_ P—Po( Ly 2){2(1_Q* Q)
16a Gl G2 2IJ-P0
(1 Q*) 2/3
WP, —1 } (7.59)
This expression is shown in Fig. 7.10(b) by the curve ABC. At point C, when
the tangential force is completely reversed, substituting 0 = —Q, in equations
(7.57) and (7.59) gives
c=c¢, and &=-6,

Thus the reversed slip has covered the original slip annulus and the distribution
of tangential traction is equal to that at 4, but of opposite sign. The conditions
at C are a complete reversal of those at 4, so that a further reversal of Q produces
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a sequence of events which is similar to unloading from A4, but of opposite sign.
The displacement curve CDA completes a symmetrical hysteresis loop.

The work done by the tangential force during a complete cycle, represented
by the area of the loop, is dissipated by a reversal of micro-slip in the annulus
¢ <r<a. This problem was first studied by Mindlin et al. (1952), who derived
an expression for the energy dissipated per cycle, viz.:

AW: 9/.12P02 (2_V1 + 2_'V2)
100 \ G, G,
5/3 5 2/3
x[l—(l—Q‘) _ 2. {1—(1—Q‘) ;] (7.60)
uPy 6uP, Py

During repeated oscillation a tangential force might be expected to produce
some attrition of interface in the annulus where oscillating slip is taking place.
Measurements by Goodman & Brown (1962) of the energy dissipated in micro-
slip compare favourably with equation (7.60).

We turn now to the case where the line of action of the oscillating force £F,
is not tangential to the surface, but makes a constant angle « to the z-axis. If the
inclination of the force is less than the angle of friction, we saw in the last
section that the first application of the oblique force F causes no slip anywhere
in the contact area. The derivation of this result is equally applicable when F is
decreasing, so no slip would be expected and hence no energy would be dissipated
in a cycle of oscillation.

When the inclination of the force exceeds the angle of friction, slip arises on
first loading and on unloading. Mindlin & Deresiewicz (1953) have traced the
variations in slip, traction and tangential compliance when two spherical bodies,
compressed by a steady normal load Py, are subjected to a cyclic oblique force
F which oscillates between the extreme values F, and —F, . They show that the
first foading from F = 0 to F = +F, and the first unloading from F = +F_ to
F =—F_ are unique. Subsequently a steady cycle is repeated. The contact
radius varies from ¢, toa_, determined by the maximum and minimum values
of the normal load, i.e. Py + F, cos a. Oscillating slip occurs in the annulus
c,<r<a,,where

3

Ce _PO—F,(sina)/,u
( ) Py + F, cosa

(7.61)

a,

The energy dissipated per cycle in oscillating slip is shown to be:

9 202 2— 1 (1+2X
AW: (MP()) ( Vl+ VZ) [_ {—’”“(l—)\L‘)S/s
10a, Gy G, 41—
1—2A 6—L,—5\L,
a4+ u,)m} Sl el 8 —L‘)M] (7.62)
1+ 6(1—2A%)



Tangential loading and sliding contact 228

where L, = F sin a/uPy, A = u/tan « and aqy is the contact radius due to Py. If
the force acts in a tangential direction, & = /2 and A = 0. Equation (7.62)
then reduces to equation (7.60). When the angle « diminishes to the value
tan~! u, X = 1 and the energy loss given by (7.62) vanishes.

This interesting result - that oscillating forces, however small their amplitude
compared with the steady compressive load, produce oscillating slip and conse-
quent energy dissipation if their inclination to the normal exceeds the angle of
friction - has been subjected to experimental scrutiny by Johnson (1961) using
a hard steel sphere in contact with a hard flat surface. The angle of friction
was approximately 29° (u = 0.56). Photographs of the surface attrition due to
repeated cycles of oscillating force are shown in Fig. 7.11. Measurements of the
energy dissipated per cycle at various amplitudes of force F, and angles of
obliquity « are plotted in Fig. 7.12. Serious surface damage is seen to begin

Fig. 7.11. Annuli of slip and fretting at the contact of a steel sphere and
flat produced by an oscillating oblique force at an angle « to the normal.

(a) o =20° (b) a=30°.

(¢) a = 60°. (@) a=90°.
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at values of & in excess of 29°, when the theory would predict the onset of slip,
and the severity of attrition is much increased as a approaches 90°. This is
consistent with the large increase in energy dissipated as the angle a is increased.
There is generally reasonable agreement between the measured energy dissipation
and that predicted by equation (7.62), taking 4 = 0.56. The small energy loss
measured at a = 0 is due to elastic hysteresis.

It is evident from Fig. 7.11 that some slight surface damage occurred at angles
at which no slip would be expected. More severe damage has been observed by
Tyler et al, (1963), within the annulus e, <r <a_,, under the action of a purely
normal load. The difference in curvature between the sphere and the mating flat
surface must lead to tangential friction and possible slip, but this effect is very
much of second order and cannot be analysed using small-strain elastic theory.

It is more likely that the damage is associated with plastic deformation of the
surface asperities.

The contact problems involving oscillating forces discussed in this section are
relevant to various situations of engineering interest. Oscillating micro-slip at

Fig. 7.12. Energy dissipated in micro-slip when a circular contact is
subjected to a steady load Py and an oscillating oblique force of ampli-
tude F, at an angle a to the normal. Eq. (7.62) compared with experi-
mental results (Johnson, 1961).
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the interface between two surfaces which are subjected to vibration, often com-
bined with corrosion, produces the characteristic surface damage described as
‘fretting’. In components which also carry a high steady stress, the presence of
fretting can lead.to premature failure of the component by fatigue. An ideal
solution to this problem is to eliminate the possibility of micro-slip. From the
examples discussed in this section, two lessons can be learnt. Firstly, the design
should be arranged so that the line of action of the oscillating force is close to
the direction of the common normal to the two mating surfaces. Secondly, the
profiles of the two contacting surfaces should be designed so that, when they
are in contact and under load, high concentrations of tangential traction at the
edge of the contact area are avoided. This means that the ‘sharp notch’ which
arises at the edge of the contact of non-conforming surfaces must be avoided.
Such a modification to prevent micro-slip is illustrated in Fig. 7.13. These
questions have been discussed in a paper by Johnson & O’Connor (1964).

The energy dissipated in micro-slip at surfaces in contact provides one source
of vibration damping in a built-up mechanical structure. In particular we have
seen how slip and frictional damping may be expected even though the amplitude
of the oscillating force transmitted by the surfaces in contact is only a small
fraction of the force necessary to cause bulk sliding at the interface. If the
amplitude of oscillation is small, i.e. if Q, /uPy < 1.0, equation (7.60) for the
energy loss per cycle reduces to

1 2=y 2—v,
- ( + ) 02 (1.63)
36auPy\ G G,
i.e. the energy loss is proportional to the cube of the amplitude of the oscillating
force. The same is true for an oblique force (eq. (7.62)). In a review of the
damping in built-up structures arising from interfacial slip Goodman (1960)
shows that the variation of energy loss with the cube of the amplitude is a general
rule which applies to clamped joints having a variety of geometric forms. These
cases all have one feature in common: they develop a region of micro-slip which

Fig. 7.13. Influence of the profiles of contacting bodies on micro-slip
and fretting.
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grows in size in direct proportion to amplitude of the force. Experimental
measurements of slip damping however tend to result in energy losses which

are more nearly proportional to the square of the amplitude at small amplitudes.
In part this discrepancy between theory and experiments is due to inelastic
effects within the body of the solids (internal hysteresis damping) which provide
a large proportion of the measured damping at small amplitudes. But variations
in the coefficient of friction and effects of roughness of the experimental surface
are also influential (see Johnson, 1961).

A third practical application of the contact stress theory discussed in this
section lies in the mechanics of granular media. Mindlin and his colleagues used
the compliance of elastic spheres in contact to calculate the speed of propaga-
tion of elastic waves through an idealised granular ‘solid’ made up of elastic
spheres packed in a regular array. This work is summarised by Mindlin (1954)
and by Deresiewicz (1958).

7.5 Torsion of elastic spheres in contact

A situation which is qualitatively similar to those discussed in the
previous sections of this chapter arises when two elastic solids are pressed
together by a constant normal force and are then subjected to a varying
twisting or ‘spinning’ moment about the axis of their common normal. The
physical behaviour is easy to visualise. The normal force produces an area of
contact and distribution of normal pressure given by the Hertz theory. The
twisting moment causes one body to rotate about the z-axis through a small
angle § relative to the other. Slip at the interface is resisted by frictional traction.
Each body is regarded as an elastic half-space from the point of view of calcu-
lating its elastic deformation. Under the action of a purely twisting couple M,
the state of stress in each body is purely torsional, i.e. all the direct stress com-
ponents vanish, as discussed in §3.9. In the case of spheres in contact the system
is axi-symmetrical; 7,4 and 7,4 are the only non-zero stress components and ugy
is the only non-zero displacement.

If there were to be no slip at the interface, it follows that the contact surface

must undergo a rigid rotation relative to distant points in each body. Thus

Ugy = By, Upa = —Par
The distribution of tangential traction to produce a rigid rotation of a circular

region on the surface of an elastic half-space is shown to be (equations (3.109)
and (3.111))

3M,r
q(r) = —5 (@ —r*)1? (7.64)
4ma

where g(r) acts in a circumferential direction at all points in the contact circle
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r < a. The rotation is given by

1
B=m+ﬁz=%(—~+i)%f (7.65)
G1 G2 613

A similar result for bodies of general profile, whose area of contact is elliptical,
follows from equations (3.114) and (3.115).

As we might expect, the surface traction to prevent slip entirely, given by
equation (7.64), rises to infinity at the edge of the contact circle so that an
annular region of slip will develop. This slip will be in a circumferential direction
and the surface traction in the slip annulus ¢ <7 < g will take its limiting value

3
qm=wm=j§w—ﬂw2 (7.66)

Fig. 7.14. A circular contact area subjected to a twisting moment M,.
(@) Shear traction g (#/a): A - no slip, eq. (7.64); B - partial slip, taking
c=af v/2. () Angle of twist 8: A - no slip; B with slip.
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The radius ¢ of the stick region is given by

i — 02 /42 ( L i) — 2
477(1 c*/a?) ) +G2 D(k) = a*B/uP (7.67)
where D(k) = K(k) — E(k); k = (1 — c*/a*)''?, and K(k) and E(k) are complete
elliptic integrals of the first and second kind respectively. The distribution of
traction in the stick circle and the relation between the twisting moment M, and
the angle of twist 8 are shown in Fig. 7.14(a) and 7.14(b) respectively. These
results are due to Lubkin (1951).

As the twisting moment is increased the radius of the stick region decreases
and eventually shrinks to a point in the centre. One body is then free to ‘spin’
relative to the other resisted by a constant moment

M, = 3quPal16 (7.68)
The shear stress reaches its limiting value at all points. The state of stress within
the solid under the combined action of this tangential traction and the Hertz
pressure has been investigated by Hetenyi & McDonald (see §3.9).

Spherical bodies in contact which are subjected to an oscillating twisting
moment *M¥ have been studied by Deresiewicz (1954). Unloading after the
application of a moment M} leads to a reversal of micro-slip at the edge of the
contact circle with consequent hysteresis in the angle of twist. In a complete
oscillation of the moment a hysteresis loop is traced out, similar to the loop
arising from an oscillating tangential force shown in Fig. 7.10. Deresiewicz
shows that the energy dissipated per cycle, represented by the area of the
hysteresis loop, is given by

2P MF\>3
A= [%{1—(1—% Z) ,
Ga uPa

1/2
1)
wPa wha

For small amplitudes (M¥ < pPa) this expression reduces to
AW =~ 3M*3[16Ga*uP (7.70)

in which the energy loss per cycle is again proportional to the cube of the
amplitude of the twisting moment.

}] (7.69)

7.6 Sliding of rigid-perfectly-plastic bodies

In §6.2 we considered the contact of perfectly plastic bodies under the
action of normal compression. The plastic deformation was regarded as suffici-
ently large to justify neglecting the elastic strains and applying the theory of
rigid-perfectly-plastic solids. We shall now consider such contacts to which
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tangential as well as normal forces are applied so that sliding motion or, at least,
incipient sliding occurs. The analyses presented in this section have been applied
mainly to the interaction between the irregularities on the sliding surfaces of
ductile solids and thereby relate to theories of friction and wear (see Bowden

& Tabor, 1951). The simplest example which has been solved completely is that
of a plastic wedge which is compressed and subsequently sheared (Johnson,
1968a). We shall take this example first.

{a) Combined shear and pressure on a plastic wedge

A rigid-perfectly-plastic wedge, of semi-angle ¢, is deformed by a rigid
~flat die. If the interface were frictionless no tangential force could be realised,
so that sliding could not contribute to the deformation. We shall assume the
opposite extreme: that there is no slip at the interface.

Under an initial compressive load P the wedge is crushed as described in
§6.2(c) and shown in Fig. 6.8(d). The pressure on the die face is given by
equation (6.28) viz.:

Po=P[lo=2k(1+ )
The normal force is now kept constant and a steadily increasing tangential force
Q is applied, which introduces a shear traction g at the interface and causes the
slip lines to meet the die face at angles 7/4 * ¢. The slip-line field for the com-
bined action of P and Q is shown in Fig. 7.15(a). The triangle ABC adheres to
the face of the die and moves with it both normally and tangentially. Triangles
BDE and EHJ also move as rigid blocks. The left-hand shoulder of the wedge
(apex A) is unloaded by Q and does not deform further. At the stage of the
process shown in Fig, 7.15(a) the die pressure is

p=k(1+ 2y + cos 2¢) = po — 2k(¢ — sin® §) (7.71)
and the shear stress on the die face is

q =2k sin ¢ cos ¢ (7.72)
Hence

g ¢ sin ¢ cos ¢

== (7.73)

P p (1+yo)—(¢+sin®¢)
As the tangential force is increased, ¢ increases and, in due course, ¢ = w/4.
A second stage of deformation is then reached, illustrated in Fig. 7.15(d), in
which

p=k(1+2¢) (7.74)
and

g = k = constant (7.75)
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hence

o 1

P 1+2y

Further increases in Q causes the block BHJ to rotate clockwise so that
y steadily decreases to zero and Q/P approaches unity. At this point sliding
might be expected by shear of the interface AB, With real materials, which
strain-harden, it seems likely that further bulk deformation could occur by
shearing virgin material along a slip line from 4 to J.

It is apparent from the analysis that the tangential force Q causes an increase
in contact area even though the normal load P remains constant. This process
has been called ‘junction growth’ by Tabor (1959). In plane deformation the

(7.76)

Fig. 7.15. Combined shear and pressure on a rigid-perfectly-plastic
wedge (a = 60°): (a) first stage (Q/P < 0.72); (b) second stage
(0.72< Q/P<1.0).
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area increase is given by
i = l— _Pe (7.77)
4o b p
where p is given by equations (7.71) and (7.74). The area growth for a wedge of
angle o = 60° is shown in Fig. 7.16.

So far it has been assumed that adhesion between the wedge and the die is
sufficient to prevent sliding at the interface. The shear stress at the interface is
also plotted against Q/P in Fig. 7.16. If, due to contamination or lubrication,
the shear strength of the interface is less than that of the solid k, then the
process of plastic deformation and area growth will be interrupted by premature
sliding at the interface. Fig. 7.16 is instructive in.relation to metallic friction:
it shows the importance of surface contamination upon the effective coefficient
of limiting friction. For example, if the maximum shear stress which the inter-
face can sustain is reduced by contamination to one half the shear strength of
the metal (Q/P) is only 0.15. At the other extreme, if the strength of the inter-
face approaches &, the analysis suggests that the coefficient of friction approaches
1.0, a value which is consistent with experiments on a chemically clean ductile
material.

Collins (1980) has examined the situation where a wedge is deformed by
a rigid flat die under the action of normal and tangential forces which increase

Fig. 7.16. Contact area growth of plastic wedge (& = 60°) under the
action of a constant normal load P and an increasing tangential load Q.
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in a fixed ratio. At small or moderate ratios of Q/P the modes of deformation
of the wedge are similar to those shown in Fig. 7.15. For a ratio Q/P - 1.0

a different mode of deformation is possible in which a spiral chip is formed as
shown in Fig. 7.17(b). Experiments suggest that this mode of deformation may
also occur in the case of a constant normal load discussed previously, when
Q/P - 1.0, if the material is capable of strain hardening.

Fig. 7.17. Application of an oblique force to a plastic wedge. When
Q/P ~ 1.0 a ‘curly chip’ is formed (Collins, 1980).

(b) Ploughing of a rigid-plastic surface by a rigid wedge

In this example we consider a rigid-perfectly-plastic half-space which
is indented by a rigid wedge and is subsequently ploughed by the action of
a tangential force applied to the wedge perpendicular to its axis. In the first
instance we shall take the faces of the wedge to be frictionless. The deformation
is determined by constructing slip-line fields and their associated hodographs
progressively in the stages shown in Fig. 7.18. In stage (1) the application of
the normal load P alone produces an indentation of depth ¢, as shown, The
subsequent application of a steadily increasing tangential force Q, whilst keeping
P constant, unloads the left-hand face of the wedge so that further deformation
takes place by the wedge sliding down the left-hand shoulder of the initial
indentation. The wedge continues to slide deeper until O = P tan o, when the
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pressure on the left-hand face of the wedge has fallen to zero (stage 2). During
subsequent deformation the force F on the active face of the wedge remains
constant (=P cosec a). As material from the trough is displaced into the prow,
the wedge rides up on its own ‘bow wave’ such that the contact length % satisfies
the relationship:

F =ph=2k(1 + {)h = constant (7.78)

As deformation proceeds (stages 3—6) the apex of the wedge approaches the free
surface asymptotically. In the steady state a plastic wave is pushed along the
surface, like a wrinkle in a carpet, giving a permanent shear displacement
& to the surface layer of the half-space. The steady-state behaviour (o < n/4)
is illustrated in Fig. 7.19(z). In this condition
ps=2k(1 + ¢g) = 2k(1 —n/2 + 2a) } (7.79)
P=phgsina; Q=ph,cosa

Through the progressive construction of the slip-line fields and hodographs
the trajectory followed by the apex of the wedge can be found and is plotted
in Fig. 7.20. In common with crushing a plastic wedge, the application of
tangential force causes the surfaces firstly to sink together, thereby increasing
the area of contact and decreasing the contact pressure. In the case of the
indenting wedge, this first stage is followed by a period in which the wedge
climbs back to the surface pushing a plastic ‘wave’ ahead of it along the surface.

Friction at the wedge face modifies the behaviour described above, Moderate
friction causes the slip lines to meet the wedge face at w/4 £ ¢, but severe
friction results in adhesion between the wedge face and the solid. Initial pene-
tration then follows the field shown in Fig. 6.5 or 6.6. As a tangential force is
applied the wedge sinks in further, at 45° to begin with, and then at the angle of
the wedge face. Proceeding as before progressive construction of the slip-line fields
and hodographs enables the trajectory of the wedge and forces on the wedge face

Fig. 7.18. Ploughing of a rigid-plastic surface by a rigid frictionless
wedge (@ = 60°), under the action of a steady normal load P and an
increasing tangential force Q. Progressive stages of deformation,
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Fig. 7.19. Plastic bow wave produced by the steady-state sliding of
a rigid wedge over a perfectly plastic surface: (@) frictionless; () with
no slip at the wedge face.
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Fig. 7.20. Transient ploughing of a plastic surface by a rigid wedge:
ratio of tangential to normal force Q/P; ratio of shear stress to normal
pressure q/p on wedge face; depth of penetration §/c¢y.
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to be found (see Fig. 7.20). The adhesive wedge ploughs much deeper than the
frictionless wedge and builds up a larger prow ahead. The situation in the limit
when the wedge reaches the surface level is shown in Fig. 7.19(d). At this stage

the ratio Q/P approaches unity and the prow is free to shear off along the slip

line ADEC. The ratio q/p of shear to normal traction on the wedge face during
the process is also plotted in Fig. 7.20. For adhesion to be maintained throughout,
the coefficient of friction between the wedge face and the solid must exceed

cot a.

The development of a prow of heavily deformed material in the manner just
described has been demonstrated by Cocks (1962) and others in sliding experi-
ments with clean ductile metals. Challen & Oxley (1979) refer to a plastic wave
(Fig. 7.19(a)) as the ‘rubbing mode’ of deformation, since material is smeared
along the surface without being detached. They refer to the deformation shown
in Fig, 7.19(b), in which a prow builds up and may become detached, as the
‘wear mode’ and investigate the conditions of wedge angle and interfacial friction
which lead to one mode or the other. They also show that a third mode — the
‘cutting mode’ — is possible; the wedge does not rise to the level of the free
surface but produces a continuous chip in the manner of a cutting tool.

(c] Interaction of two rigid-plastic wedges

In the study of sliding friction between rough metal surfaces, the inter-
action of two wedges, which interfere and mutually deform as they pass, is of
interest. The situation is different from the above examples in that the relative
motion of the two wedges is taken to be purely tangential. In these circumstances
both the tangential force Q and the normal force P vary throughout a contact
cycle; indeed, with strong adhesion at the interface, P becomes tensile just
before the wedges separate. '

Slip-line fields for the initial deformation have been proposed by Green
(1954). Complete cycles of contact have been analysed by Edwards & Halling
(1968a & b), using the approximate ‘upper bound’ method, which are in reason-
able agreement with experiments (see also Greenwood and Tabor, 1955).

(d) Ploughing by three-dimensional indenters

Most practical instances of ploughing, the action of a grit on a grinding
wheel for example, involve three-dimensional deformation; a furrow is produced
and material is displaced sideways. The simplest model of this process is that of
a rigid cone or pyramid sliding steadily over the surface, but even these cases are
difficult to analyse.
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By assuming a simple mode of deformation in which a cap of material adheres
to the front of the cone, Childs (1970) has used the plastic work method to
obtain approximate values for the tangential force Q to plough a furrow of
prescribed depth. Material from the furrow is ploughed into shoulders on either
side, Good agreement was found with measurements of the ploughing force, but
the height of the shoulders was observed to be appreciably less than in the
theoretical deformation mode.



8

Rolling contact of elastic bodies

8.1 Micro-slip and creep

In Chapter 1 rolling was defined as a relative angular motion between
two bodies in contact about an axis parallel to their common tangent plane
(see Fig. 1.1). In 2 frame of reference which moves with the point of contact
the surfaces ‘flow’ through the contact zone with tangential velocities V; and
V,. The bodies may also have angular velocities w,; and w,, about their
common normal. If V; and V, are unequal the rolling motion is accompanied
by sliding and if w,; and w,, are unequal it is accompanied by spin. When
rolling occurs without sliding or spin the motion is often referred to as ‘pure
rolling’. This term is ambiguous, however, since absence of apparent sliding
does not exclude the transmission of a tangential force @, of magnitude less
than limiting friction, as exemplified by the driving wheels of a vehicle, The
terms free rolling and tractive rolling will be used therefore to describe motions
in which the tangential force 0 is zero and non-zero respectively.

We must now consider the influence of elastic deformation on rolling contact.
First the normal load produces contact over a finite area determined by the
Hertz theory, The specification of ‘sliding’ is now not so straightforward since
some contacting points at the interface may ‘slip’ while others may ‘stick’.
From the discussion of incipient sliding in §7.2, we might expect this state of
affairs to occur if the interface is called upon to transmit tangential tractions.
A difference between the tangential strains in the two bodies in the ‘stick’ area
then leads to a small apparent slip which is commonly called creep. The way
in which creep arises may be appreciated by the example of a deformable wheel
rolling on a relatively rigid plane surface. If, owing to elastic deformation under
load, the tangential (i.e. circumferential) strain in the wheel is tensile, the surface
of the wheel is stretched where it is in sticking contact with the plane. The
wheel then behaves as though it had an enlarged circumference and, in one
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revolution, moves forward a distance greater than its undeformed perimeter
by a fraction known as the creep ratio. If the tangential strain in the wheel is
compressive the effect is reversed.

The phenomenon of creep was described by Reynolds (1875) in a remark-
ably perceptive paper. He recognised that the contact region would be divided
into stick-and micro-slip zones in a manner determined by the interplay of
friction forces and elastic deformation, and supported his arguments by creep
measurements using a rubber cylinder rolling on a metal plane and vice versa.t

The boundary conditions which must be satisfied in the stick and micro-slip
regions of rolling contact will now be developed. In our coordinate system we
shall take rolling to be about the y-axis so that, in the absence of deformation
and sliding, material particles of each surface flow through the contact region
parallel to the x-axis with a common velocity ¥ known as the rolling speed. In
addition the bodies may have angular velocities w,; and w,, due to spin. The
application of tangential tractions and the resulting deformation introduce
creep velocities §V; and 0V,, each having components in both the x and y
directions, which are small compared with the rolling speed V. This is the
Eulerian view in which the material moves while the field of deformation remains
fixed in space. The velocity of a material element is also influenced by the state
of strain in the deformed region. If the components of tangential elastic
displacement at a surface point (x, ¥) are i, (x, y, t) and i1,,(x, y, 1) the
‘undeformed’ velocity is modified by the components

i _ O 3y
ds ax ot

and
diy 00y 0,
dt ox ot

Hence the resultant particle velocities at a general surface point, taking into
account creep, spin and deformation, are given by the expressions:
Ol Ou,
ux(x,y)=V+8Vx—-w2y+Va——+a— (8.1a)
X t

1 Reynolds found that a rubber cylinder moved forward more than its undeformed
circumference in one revolution and hence deduced that the circumferential strain
was tensile. He explained this result by the influence of Poisson’s ratio on the radial
compressive strain produced by the normal load. However, it follows from the
Hertz theory (18824) that the tangential strain is, in general, compressive and for
an incompressible material like rubber is zero. The explanation for the anomaly
lies in Reynolds’ use of a relatively thin rubber cover on a rigid hub for his
deformable roller. In these circumstances the tangential strains in the cover are
tensile and consistent with the experiments (see Bentall & Johnson, 1967).
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and

iy, Oy,
vy, y)=86V, tw,x +V—+ —=

8.1b
ox ot ( )

If the strain field does not change with time, which would be the case in steady
rolling (i.e. uniform motion under constant forces), the final terms in these
expressions vanish. The terms (du, /0x) and (diz,, /0x) arise from the state of
strain in the surface, which can be found if the surface tractions are known.
They are necessarily small compared with unity. The velocities of micro-slip
between contacting points in steady rolling are then gﬁven by

s'x(x,y) = Uy~ Ux2

Oily;  Oilyy '
:(6 I/;cl_—6Vx2)"—('f")zl—_'f"Jz2)J""— V("__ _' (824)
ox ox
and
~§y(xa.V) =vy1 T U2
aﬁyl aﬂy2
=( Vyl — Vy2) Fwa—wp)x+ V| ——— (8.2p)
ox ox

For an elliptical contact area of semi-axes a and b, we rewrite (8.2) in non-
dimensional form to give

. a[‘xl al_‘x2

$./V =% —vy/c +( —_—— —) (8.30)
0x ox

. Oy, Oily,

sy/V= £, + Yx/c + ( —_ — ——) (8.3b)
ox ox

where &, = (6 Vi — 8Via)/V and &, = (8 V), — 8 ¥,,)/V are the creep ratios
Y is the non-dimensional spin parameter (w,; — Wz, )c/V and ¢ = (ab)''2.
In a stick region
Sy =8,=0 8.4
In addition, the resultant tangential traction must not exceed its limiting
value, viz.:
lgCx, )| <wp(x,») (8.5)

where u is the coefficient of limiting friction.
In a slip region, on the other hand,

lg(x, )1 = up(x,y) (8.6)
and the direction of ¢ must oppose the slip velocity, viz.:

qx,y) _ x,y)
lgCe, »)I $Ge, »)!

(8.7)
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Equations (8.4)-(8.7) specify the boundary conditions at the interface of two
bodies in steady rolling contact; the first two apply in that part of the contact
area where there is no slip and the second two apply in the zone of micro-slip.
It will be appreciated from the examples which we shall discuss in the remainder
of this chapter that one of the chief difficulties of such problems lies in finding
the configurations of the stick and slip zones. In this respect the conditions at
the boundaries of the contact area are significant. At the leading edge, where
the material is flowing into the contact, the strain and hence the velocity must
be continuous across the boundary. We saw in §2.5 that a discontinuity in
tangential traction g at the boundary leads to a singularity in surface strain
just outside the contact. It follows, therefore, that ¢ = O at all points on the
leading edge of the contact. The situation at the trailing edge is different. If

we postulate a coefficient of friction sufficiently high to prevent any slip until
the material emerges from the trailing edge, such that there is a discontinuity
in traction, then the instantaneous change in strain and hence velocity at that
point implies that, in reality, some of the stored elastic energy is irreversibly
dissipated. For such a situation to arise in reverse at the leading edge would
clearly contravene thermodynamic principles.

Creep of an elastic belt

The most elementary example of creep and micro-slip in rolling contact
is provided by a flexible elastic belt which is transmitting a torque M between
two equal pulleys (see Fig. 8.1). If T1(= Ty + ¢) and T, (= T, — ¢) are the tensions
on the tight side and slack side respectively,

T,—T,=2t=M/R (8.8)
The belt slips on each pulley over an arc R¢ given by the capstan formula:

Ty, 1+ M/2RT
et L TTT70 (8.9)
T2 1— M/2R To
where it is assumed that the torque M is sufficiently small for the arc of slip to
be less than the arc of the belt (i.e. ¢ <m). The question now arises: where is
the slip arc located on each pulley? The tensile strain in an elastic belt of
extensibility A is given by
e=AT
so that an element of belt of unstretched length dx, when under tension, has
length d/ = (1 + ¢) dx. The velocity of the element is thus given by

dl dx
v=—=(0+e)—=QQ+ ATV (8.10)
dr dr

where V (= dx/dr) is the ‘unstretched’ velocity of the belt. This expression is
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Fig. 8.1. Creep of a flexible belt transmitting a torque M between pulleys
rotating at wi and w,.

&
:_,\'\Q ®

Driven pulley Driviné pulley

consistent with the general equation (8.1). Thus the velocity of the tight side

v, is greater than that of the slack side v,. We note that frictional traction

q pulls the belt forward on the driving pulley, but drags it back on the driven
pulley, as shown. Since friction must oppose the direction of slip (condition
(8.7)) the pulley must be moving faster than the belt in the slip arc of the driver
and slower than the belt in the slip arc of the driven pulley. The peripheral
speed of the driving pulley must therefore be vy, so that the stick arc is located
where the belt runs onto the pulley. Similarly the peripheral speed of the driven
pulley must coincide with v, , whereupon the stick arc occurs at the run on to
the driven pulley also. The creep ratio for the whole system may be defined by:

(w1 —wy)R i

vV vV
Thus the driven pulley runs slightly slower than the driving pulley in proportion
to the transmitted torque. The loss of power is expended in frictional dissipation

in the slip arcs. The features exhibited by this one-dimensional example arise in
the more complex cases now to be considered.

g 2 \Ti—Ty) = MR ®.11)

8.2 Freely rolling bodies having dissimilar elastic properties

Two elastic bodies which are geometrically identical and have the same
elastic properties are completely symmetrical about their interface. When they
roll freely under the action of a purely normal force, no tangential traction or
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slip can occur, so that the contact stresses and deformation are given by the
Hertz theory of static contact. In these circumstances the rolling process is
completely reversible in the thermodynamic sense,

The problem of the stresses and micro-slip at the rolling contact of two bodies
whose elastic constants differ, which was discussed qualitatively by Reynolds in
1875, has had to wait for nearly a century for a quantitative solution, The
problem arises through a difference in the tangential strains in the two surfaces
if the elastic constants of the bodies are different, which introduces tangential
tractions and possible slip at the interface. This problem is the equivalent in
rolling contact to the normal contact of dissimilar solids with friction discussed
in §5.4.

{a) Freely rolling cylinders with parallel axes

The cylinders of radii R, and R, are pressed into contact by a force
P per unit length which produces a contact area and contact pressure given by
Hertz. In steady rolling it follows from condition (8.3) that the difference in
tangential displacement gradients in a stick region is constant. Following the
customary approach we shall assume first that friction is sufficient to prevent
slip entirely, so that the strain difference is constant throughout the contact
strip (—a < x < a). The strain 9it, /dx at each contact surface due to distributions
of tangential and normal tractions g(x) and p(x) is given by equation (2.25q).
When this expression is substituted into equation (8.3a), with the slip velocity
§, taken to be zero,

a g(s
nfp (x) +J‘ ) ds = inE*f, = constant, —a<x<a (8.12)
_gX—S )

This equation and (5.27) comprise coupled integral equations for p (x) and
q(x). They have been solved by Bufler (1959) using the method of §2.7 with
class ITI boundary conditions. We shall simplify the problem by neglecting the
effect of tangential traction on the normal pressure which is then given by Hertz.
Equation (8.12) now provides a single integral equation for g(x). Following the
treatment of the static problem in §5.4, g(x) is divided into two components
g'(x) and q"(x). The traction ¢'(x) is that necessary to eliminate the difference
in strains due to the normal pressure; it is given by equation (5.32). ¢"(x) is the
traction required to give rise to a constant strain difference £, ; it is determined
by an integral equation of the form specified in (2.39) and (2.44) where n = 0
and 4 = nE*¢, /2 with the solution

E*E, x

2 (a2 _x2)1/2

q"(x)= (8.13)
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At the leading edge of a rolling contact the strain must be continuous as a material
element proceeds from outside to inside. Hence ¢ must be zero at the edge of
contact. For this requirement to be satisfied the singular terms at x = —a must
vanish when ¢'(x) and ¢”(x) are added. This condition fixes the magnitude of the
creep ratio to be

£, = 4fpo/nE* = 2Ba/mR (8.14)
where 1/R = 1/R; + 1/R,, whereupon
B a+x
q(x) == po(1 —x?/a*)"? ln( ) (8.15)
7r a—x

This traction is plotted in Fig. 8.2. For practical values of § (see Table 5.1) it is
an order of magnitude smaller than the normal pressu‘re’,and acts outwards on
the more compliant surface and inwards on the more rigid one. Bufler’s exact
solution taking into account the influence of tangential traction on normal
pressure gives results which differ only slightly from (8.14) and (8.15).

We now examine the possibility of slip. From equation (8.15) it is apparent
that the ratio q(x)/p(x) becomes infinite at x = *a, so that some slip is
inevitable. To obtain an indication of the slip pattern it is instructive to

Fig. 8.2. Distributions of tangential traction in the rolling contact of
dissimilar rollers (8 = 0.3, 4 = 0.1). No slip: solid line - exact, Bufler
(1959); chain line - approximate, eq. (8.15). Complete slip: broken line
- q(x) = up(x). Partial slip: line with spots - numerical solution,
Bentall & Johnson (1967).
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examine the other extreme case, in which the coefficient of friction is small,
so that slip is unrestricted and the tangential traction is too small to affect the
elastic deformation. The tangential strain in each surface is then given by the
first term in equation (2.25a) where p (x) is the Hertz pressure distribution.
Substituting in (8.2) gives an expression for the slip velocity:

= b (Baf4R) (1 =) (8.16)
If £, has a suitable positive value the slip velocity, given by (8.16), is positive at
the ends of the contact and negative in the centre. The frictional traction
£4p (x), though small, must change direction at two points symmetrically
disposed about the origin. The location of these points, and hence the value
of £, , are determined by the condition that, in free rolling, the net tangential
force is zero. This condition demands that the direction of slip reverses at

= 1£0.404a whereupon

£, = 0.914pa/R (8.17)

The true state of affairs must lie between the extremes of no-slip and com-
plete slip. We might expect there to be two stick regions separating three regions
in which there is slip in alternate directions. A numerical analysis by Bentall
& Johnson (1967), using the method described in §5.9, has shown that this is
the case. The solution is a function of the parameter (f/u). The spread of the
three micro-slip zones with increasing values of (8/u) is shown in Fig. 8.3.

Fig. 8.3. Slip regions in the rolling contact of dissimilar rollers.
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A typical distribution of tangential traction is shown in Fig. 8.2 where it is com-
pared with the solutions for no-slip (equation (8.15)) and complete slip. It is
interesting to note the rapid reversal of traction and slip direction experienced
by contacting points as they pass towards the rear edge of the contact.

Rolling is no longer reversible; energy dissipation in the slip regions contri-
butes to a moment M resisting rotation of the cylinders. This moment has been
computed and is shown in Fig. 8.4.F As Reynolds predicted, the rolling resistance
is low when g is high, since micro-slip is prevented, and is again low when u is
small since the frictional forces are then small. Maximum resistance occurs at
an intermediate value of u = /5.

(b) Freely rolling spheres

Tractions at the interface of freely rolling dissimilar spheres can be
approached along the same lines. We first assume no-slip and neglect the
influence of tangential tractions on normal pressure. For no-slip, equations (8.3)
require that the differences in displacement gradient {(dit,;/9x) — (O, /0x)}
and {(9it,,/0x) — (3it,,,/3x)} should be constant throughout the contact area
and equal to —§, and —£,, respectively. The tangential traction g(x, y) which
satisfies these conditions again may be divided into a component g'(x, y) which
eliminates the difference in tangential displacements due to normal pressure

1 The tangential traction and slip, from which the dissipation has been calculated,
have been found on the assumption that the pressure distribution is symmetrical
and given by Hertz. In fact the asymmetry of the traction will give rise to a slight
asymmetry in pressure which is responsible for the resisting moment.

Fig. 8.4. Rolling resistance of dissimilar rollers.
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and a component g"(x, y) which gives rise to the constant creep coefficients.
The tangential displacements due to the Hertz pressure are radial and axi-
symmetric: ¢'(x, y) is therefore also radial and axi-symmetric (= ¢'(r)) and is
given by equation (5.35). This traction contains a term (2> —r?)~'/2 which
must be annulled at the leading edge by an equal and opposite term in the
expression for ¢"(x, y). In order to satisfy the conditions of no-slip (eq. (8.3)
and (8.4)) the resulting displacements within the contact area must satisfy
the condition diz,,/0x = 0. These conditions are satisfied by a state of uniform
bi-axial strain: dii, /dx = di1,, /0y = constant. The traction which gives rise to
this strain can be found by the method of §3.7 with the result

2E%E,

q"(r) — {(az _r2)1/2 __a2(a2 _r2)—1/2} (818)
wr

To remove the infinite traction at » = a2 when ¢"(r) is added to g'(r) we take

Ba {’3 —_— 6\3‘7
- 2 8.19
= (8.19)
whereupon
Bro 2 5 a2 1 ra r ([+r
=" {2 (g2 —¢ + - In dr 8.20
q(r) . r( ) rJ; (lz_rz)uz t—r) ; ( )

An exact solution to this problem has been obtained by _Spence (1968).

In common with the two-dimensional case there must be some slip at the
edge of the contact circle but once slip has occurred the traction is no longer
axi-symmetric and no solution is at present available.

Equation (8.19) has been checked by experiments in which the distance
rolled by a ball in one revolution has been accurately measured and compared
with the undeformed circumference of the ball. Measurements (&) with
a Duralumin ball rolling between two parallel steel planes and (b) a steel ball
between Duralumin planes (8 = £0.12) are shown in Fig. 8.5. The average of
these two experiments agrees well with equation (8.19) for the creep calculated
by neglecting slip. The small difference between the two experiments is due to
various second-order effects: (i) points on the periphery of the ball lie at
different radii from the axis of rotation. This effect, frequently referred to
as ‘Heathcote slip’, is considered in §5. For a ball on a plane a creep ratio
£, = —0.125(a/R)? is predicted. (ii) the interface is curved such that the
surface of the ball is compressed and that of the plane is stretched by an amount
of order £, = —0.10(a/R)*. These estimates are consistent in sign and order of
magnitude with the discrepancy between the creep measurements and equation
(8.19) but they are hardly significant in comparison with the second-order errors
introduced by the linear theory of elasticity.
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Fig. 8.5. Free rolling creep of a ball on a plane of dissimilar material.
Cross - Duralumin ball on steel plane; circle - steel ball on Duralumin
plane; broken line - average experimental line; chain line - theory,

eq.(8.19).
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8.3 Tractive rolling of elastic cylinders

In this section we consider rolling cylinders which transmit a resultant
tangential (tractive) force through friction at the interface, such as the wheel of
a vehicle which is driving or braked. To eliminate the effects discussed in the last
section we shall consider elastically similar cylinders. The first solution to this
problem in its two-dimensional (plane strain) form was presented by Carter
(1926) and independently by Fromm (1927), Foeppl (1947), Chartet (1947) and
Poritsky (1950).

From our discussion of two stationary cylinders which transmit a tangential
force less than limiting friction (§7.2), we would expect the contact area to be
divided into zones of slip and stick. It is instructive to start by examining the
solution to the static problem in light of the conditions of stick and slip in
rolling contact established in §1 of this chapter. In the static case (Fig. 7.7)
there is a central stick region in which tangential displacement is constant, with
equal regions of micro-slip on either side, The strains in the stick region
(0i1,. /0x = 0) satisfy condition (8.4) for no slip in rolling contact, and the
tractions shown in Fig. 7.7 satisfy conditions (8.5) and (8.6). However,
condition (8.7), which requires the direction of slip to oppose the traction
in a slip zone, is violated in the slip zone at the leading edge of the contact.
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This result leads us to expect the stick region to be located adjacent to the
leading edge of the contact area and for slip to be confined to a single zone at
the trailing edge. The same conclusion was reached in the one-dimensional
example of a belt being driven on a pulley.

The distribution of tangential traction in the static case comprises the
superposition of two elliptical distributions q.,(x) and g%(x) given by equations
(7.23) and (7.25) respectively. The traction g, (x) (= upo(1 — x*/a*)*'?)
produces a tangential strain within the contact strip, by equation (7.24),

Oily, 2(1 —»?)

= pox 8.21
- = HPo (8.21)

We displace the centre of ¢"(x) by a distance d (=a — c) so that it is now
adjacent to the leading edge, as shown in Fig. 8.6.

gh(x) = —gupo{l —(x +d) (8.22)

Within the strip (—a <x <c¢ —d) it produces a tangential strain:
oy ¢ 2(1—v?)

ox a cE

Adding (8.23) to (8.21) gives the resultant tangential strain in the strip
(—a<x<c—d)tobe
dit, 2(1—v?)

— = ——— up,d = constant
ox ak ¢

The tractions acting on each surface are equal and opposite so that the tangential
strains in each surface are equal and of opposite sign. Thus substituting in
equation (8.3), we see that the condition of no-slip (8.4) is satisfied in the strip
(—a <x < a—d) with the creep ratio given by:

£y =—4(1 —v*)upod/aE (8.24)
The resultant traction g, (x) = g, (x) + ¢4 (x) satisfies the conditions (8.5) and
(8.6) in both slip and stick zones, and the direction of slip satisfies (8.7). Asin

the static case (eq. 7.29), the width of the stick region is determined by the
magnitude of the tangential force, whence

d c
—= 1= 1= (1= Qu/uP)'"? (8.25)
a

a

Hpo(x + d) (8.23)

whereupon, by using the Hertz relationship for py, the creep ratio is given by

£, =—“E” {1=(1— 0, [uP)"2} (8.26)
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where 1/R = 1/R; + 1/R,. The relationship between &, and Q,, plotted in
Fig. 8.7, isknown as a ‘creep curve’,

The action of a tractive force, however small, causes some micro-slip at the
trailing edge of the interface. The slip region spreads forwards with increasing

tangential force until, when Q = uP, the slip zone reaches the leading edge and
complete sliding occurs,

Fig. 8.6. Tractive rolling contact of similar cylinders; (a) distribution of

tangential tractions ~ chain line - no slip, eq. (8.27); (») surface strains
Ouy/ox.
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The state of stress in the cylinders due to a traction of the form g'(x) has
been discussed in §7.1. The stresses in the rolling contact case can be found
by superposition of g, (x) and gy(x) (see §9.2).

Under conditions of high friction, such that Q/uP is small, the slip region at
the trailing edge becomes vanishingly small and the distribution of tangential
traction approaches the limiting form:

Do a+tx Ox

qx(x) S @)y p (8.27)
The corresponding limit for the creep ratio is

£, = a0, /2RP (8.28)
This relationship corresponds to a linear creep curve (Fig. 8.7), whose gradient
is referred to as the creep coefficient. The traction of (8.27) is zero at the leading
edge; in consequence the strain is continuous from outside to inside the contact
boundary, as can be seen from Fig. 8.6(b). At the trailing edge there is a singu-
larity in traction just inside the contact and a singularity in strain just outside.
In reality the singularities will be relieved by slip but we can think of it as a limit
in which the elastic strain energy built up through the contact is dissipated
instantaneously and irreversibly at the trailing edge. The rate of energy so dissi-
pated is given by the product of the tractive force and the creep ratio, i.e.

W= 0.tV =aQ,?V/2RP (8.29)

Fig. 8.7. Creep curve for tractive rolling contact of cylinders. Solid line
- Carter’s (1926) creep curve, eq. (8.26); broken line - no slip, eq.
(8.28); chain line - elastic foundation, eq. (8.69).

1.0 - /

Sliding

Q. /up




Rolling contact of elastic bodies 256

The results obtained in this section strictly apply only when the two
cylinders are elastically similar, otherwise additional tangential tractions are
present as discussed in the previous section. Under high friction conditions (small
regions of micro-slip) the results of the two sections can be superposed. Generally
the influence of the tractive force outweighs that of the difference in elastic
constants whereupon the above results can be used with £/(1 — »*) replaced
by 2E*. Interaction between the two effects has been analysed numerically by
Kalker (1971a).

When a tangential force Q,, acts parallel to the axis of the cylinders tangential
tractions and micro-slip arise in the axial direction. The surface displacements
and internal stresses produced by the distribution of tangential traction

ay(x) = upo(1 —x*/a
have been found in §2.9. The surface displacement gradients for (—a¢ < x < a)
are

2)1/2

a—LE‘:O a&='——lﬁ£ (8.30)
0x ox G a

This relationship is similar to that expressed by equation (8.21) except for the
change in elastic constant from (1 — v?)/E to (1/2rG). The analysis of the
present case is, therefore, completely analogous to that for a longitudinal
tangential force. The contact region is divided into a stick region at the leading
edge and slip region at the trailing edge. The axial traction is found by the
superposition of g3, and g, (= —qyc/a) as before, where the extent of the slip
region is given by (8.25). The axial creep ratio is given by substituting

equation (8.30) for each surface in (8.3b) with the result:

sy=—(i + L) upo 1 — (1 — 0, JuP)2) (831)
G G,

Cases of combined axial and longitudinal traction have been examined by
Heinrich & Desoyer (1967) and Kalker (1967a).

8.4 Rolling with traction and spin of three-dimensional bodies
Three-dimensional bodies in rolling contact may be called upon to
transmit tangential forces, O in the longitudinal and Q,, in the transverse direc-
tions, while being subjected to a relative angular velocity about the normal axis
(Aw, = w, — wyy ) referred to as spin. The spin motion tends to twist the
contact interface and hence also gives rise to tangential tractions and micro-
slip. In the two-dimensional situations considered previously stick and slip
zones comprised strips parallel to the y-axis. The three-dimensional case is
much more complex. Contact is made on an elliptical area; the shape of the
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stick and slip zones are not known a priori and condition (8.7), which requires
the tangential traction in a slip zone to oppose the relative slip, couples the
effects of tangential forces and spin in a nonlinear manner.

In face of the difficulty caused by the iinknown pattern of stick and slip,
we will consider first the situation where the coefficient of friction is sufficiently
great to prevent slip and take a lead from the two-dimensional case analysed
in §3.

(a) Vanishing slip (1 — o). linear creep theory

If the coefficient of friction is sufficiently high, slip is limited to
a vanishingly thin zone at the trailing edge of the contact. In this case we seek
tangential tractions which satisfy the no-slip conditions (8.3), (8.4) and (8.5)
throughout the contact area. For simplicity we shall begin with a circular contact
subjected to a longitudinal tangential force @, which is the three-dimensional
equivalent of the situation examined in the previous section. On the basis of
the two-dimensional case (eq. (8.27)), we consider the traction

O, at+x
27_“12 ((12 _r2)1/2
The tangential displacements within the contact circle (r < &) produced by this
traction may be found by substitution in equation (3.83¢ and 4) and by perform-
ing the integrations, with the result:

o 4—3p)  on
e Q073 %y (8.33)
ox 32Ga* ox

These displacement gradients are constant throughout the contact region and
hence satisfy the conditions of no-slip (8.3) and (8.4), with creep ratios:

qx(x,y) = (8.32)

b= g =0 (8.34)
T 16Gar '
Under the action of a transverse tangential force Q,,, the traction
Qy a+t+x
qy(x’y) = '277—‘(12 (az_r2)1/2 (835)
satisfies the conditions of no-slip and results in a transverse creep:
(4 - V)Qy
& 16Ga* £

Due to the asymmetry of the traction distribution (8.35) it exerts a twisting
moment about O given by

M, =—30ya = {16/3(4 —v}§,
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In the case of pure spin, distributions of traction can be found (Johnson,
1958b) which satisfy the conditions of no-slip, viz.:

_ 8G(3—v) (atx)yfa
S 3rB3—w) (@2 —r*)?

(8.37a2)

dx

and . ’
_8G(1—v) (" —2x*—ax—y*))a

 31(3— ) e
where ¥ is the spin parameter defined on p. 244. These tractions correspond to

ay (8.37b)

zero resultant force (Q, = Q,, = 0) but give rise to a resultant twisting moment
M, , which resists the spin motion, given by:

322—v
= ._(__} Gal

9(3—2w)

When the displacement gradients due to the tractions of (8.37) are substituted
into the conditions of no-slip (8.3) and (8.4), the creep ratios are found to be:

22—v)

33—2)
It is perhaps surprising at first sight that pure spin gives rise to transverse creep,
but this phenomenon has been well supported by experiment, For details of the
above analysis see Johnson (1958z & b).

The tentative distributions of traction for rolling with traction and spin
proposed in equations (8.32), (8.35) and (8.37) do not satisfy the no-slip condi-
tions completely. To do so they must vanish at all points on the leading edge of
the contact. We see that, in each case, ¢ = 0 at the ‘leading point’ (—a, 0), but
that elsewhere along the leading edge ¢ is unbounded.

To overcome this difficulty Kalker (1964, 19674) made use of the fact
(see §3.7(e)) that a general traction:

q(x, ) = Apn(x/a)" (y/b)" {1 — (x/a)* — (y/b)*} (8.40)
gives rise to tangential displacements #, and u,, each of which varies throughout
the elliptical contact region as a polynomial in x and y of order (m + n). By
appropriate superposition of tractions of the form (8.40) the displacement
gradients can be made to satisfy the condition of no-slip throughout the contact
ellipse, while maintaining a zero value of ¢ along the leading edge. In carrying
out the necessary computations Kalker truncated the series at m + n =5 and
minimised the integrated traction round the leading edge, which amounted to
making g = O at a finite number of points on the leading edge. From this point
of view the results expressed above in equations (8.32)-(8.38) may be regarded
as the first approximation to Kalker’s solution, taking m + n = 2 and satisfying
the condition g = 0 at one point (—a, 0) only.

(8.38)

z

=0, & 14 (8.39)
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Since this is a linear theory there is no interaction between longitudinal and
transverse forces and the effects can be superposed. The results may conveniently
be summarised in three linear creep equations:

Q

azx; — Gyt (8.41)

Qy

Ea—l; = C22Ey + Casy (8.42)
M,

Glabyh Cnéy+ Cuy (8.43)

where Cj;, C,, etc. are non-dimensional creep coefficients found from the theory.
A shortened table of the creep coefficients found by Kalker (1967a) for

elliptical contact areas of varying eccentricity is given in Appendix 4. The

approximate values for a circular area obtained from equations (8.34), (8.36)

and (8.38) are given for comparison.

(b) Complete slip

At the other extreme, when the creep and spin ratios become large and
the coefficient of friction is small, the elastic deformation due to the tangential
tractions becomes small. In the expressions for slip velocities (8.3) the elastic
displacement terms can be neglected, so that slip vanishes at one point P(xp, y)
only (see Fig. 8.8), where

xp/a:_sy/lp and yp/a: Ex/lp (844)

Fig. 8.8. Rolling with creep and spin: location of the ‘spin pole’, P.
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This point is known as the spin pole; it may lie inside or outside the contact
area. Since elastic deformation in the x-y plane is neglected, the relative motion
of the surfaces comprises a rigid rotation with angular velocity (w;; — w;2)
about the spin pole. At any point A(x, y) the resultant tangential traction
q(x, y) has the magnitude up(x, y) in the direction perpendicular to the line
PA. The forces Oy, O, and the moment M, corresponding to any combination
of creep and spin can be readily computed by numerical integration. Such
computations have been carried out for circular contacts by Lutz (1955

et seqq.) and for elliptical contacts by Wernitz (1958) and Kalker (1967z).
The influence of spin upon the creep curves under the action of tangential
tractions, calculated on the basis of complete slip, is shown in Fig. 8.11. The
interaction between spin and traction plays an important role in the operation
of rolling contact friction drives,

(c¢) Partial slip: nonlinear creep theory

The distributions of traction calculated on the assumption of no slip
are zero at the leading edge and rise progressively through the contact area to
infinite values at the trailing edge. We would, therefore, expect slip to start at
the trailing edge and to spread forward through the contact area with an
increase in the tractive forces as in the two-dimensional contact analysed in
§3. This conjecture is borne out by experiment. Observations by Ollerton
& Haines (1963) of the contact ellipse between photo-elastic models show
the stick region to be roughly ‘lemon’ shaped. One edge coincides with the
leading edge of the contact ellipse and the boundary with the slip zone is a reflec-
tion of the leading edge. Experiments using a rubber ball rolling with spin on
a transparent plane (Johnson, 1962a) revealed the stick zone to be ‘pear’ shaped
with one boundary coincident with the leading edge of the contact circle. When
stick and slip zones coexist in the contact area the distribution of traction and
equations for creep have, so far, been found only approximately. Three methods
have been tried.

In the first method, the stick zone under the action of a tangential force
(without spin) is assumed to be an ellipse, similar to the contact ellipse, and
touching it at the leading point (—a, 0) shown in Fig. 8.9. This assumption has
the merit of giving simple expressions in closed form for the traction and creep
(Johnson, 19584, b; Vermeulen & Johnson, 1964). For a circular contact area,
transmitting O, alone, the creep is given by

gxz—?%? {1—(1—5—;)1/3} (8.45)

and when transmitting 0, alone
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WD) 546

Y 16Ga* 1P
When Q < pP these equations reduce to the linear creep equations (8.34) and
(8.36) which neglect slip. The assumption of an elliptical stick region is clearly
in error since it does not include the leading edge of the contact circle.
This particular difficulty is avoided by a quite different approach to the
problem suggested by Haines & Ollerton (1963) and developed by Kalker
(1967b). In their method the contact area is divided into thin strips parallel

Fig. 8.9. Tractive rolling of an elliptical contact region under a longi-
tudinal force Q. Broken line - elliptical stick zone, Johnson (1958a);
chain line - strip theory, Haines & Ollerton (1963).
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to the rolling direction (x-axis). The two-dimensional theory from §3 above is
then applied to each strip, neglecting interaction between adjacent strips. We
shall apply their method to an elliptical contact under the action of a longi-
tudinal tangential force Q. only (see Fig. 8.9).
A typical strip, distance y from the x-axis has a length 2z, and supports
a pressure
p(x) = p§(al —x*)!"?
where
pg CZ* 211.2N\1/2
— =(1—y*/p*) (8.47)
. Po a
We now assume that Carter’s theory for cylindrical contact can be applied to
the strip. A stick region of length 2¢, is located adjacent to the leading edge.
The creep ratio is given by equation (8.24), with po, d and a replaced by p§,
d, and a, respectively, whence
2(1—v)

- d 8.48
£y Ga. updd, (8.48)

Now the creep ratio &, must be a constant for the contact as a whole, hence it
follows from equation (8.48) that d ,(=a, — ¢, ) has the same value for all the
strips in which a stick zone exists. Thus the mid-points of the stick zones lie on
the straight line x = —d . The curve separating the stick and slip zones is there-
fore a reflexion of the leading edge in this line, giving rise to a lemon shaped
stick zone as observed experimentally.

The distribution of traction on a strip follows Carter and is shown in Fig. 8.9.
The tangential force dQ, provided by a strip is determined by equation (8.25) i.e.

de = IJ'P*(I _C*Z/a*z) dy

=%upoa(l —y*a*){1—(1—d,/a,)*} dy

The total force Q, is found by integration of equation (8.49) over the contact
area, noting that, when y > a® —d 2, the stick region vanishes so that the term
(1—d,/a,) is put equal to zero, with the result:

Qu/uP =35, cos™ (§,) + {1 — (1 + 3821 =85} (8.49)

where ¢, = £,G/up,. For vanishingly small slip (u - o) this expression becomes
n? Gab

Qx = Sx (8.50)
4 1—v

The value of the creep coefficient given by the strip theory (8.50) is independent
of the shape of the contact ellipse. It is compared with Kalker’s value for
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vanishingly small slip in Appendix 5. As might be expected the agreement is
good when the ellipse is thin in the rolling direction (b > a), but the effect of
neglecting interaction between the strips becomes serious for contacts in which
b<a.

To apply the strip theory to contacts transmitting a transverse force Q,, or
rolling with spin, use is made of the two-dimensional theory of transverse
traction given in §2.9. For further details the reader is referred to Kalker
(1967b). It is clear, however, that the strip theory is not satisfactory unless
b > a; it breaks down completely when the spin motion is large. For these
circumstances Kalker (1967a) devised a different approach based upon numerical
techniques of optimisation.

The difficulty of problems involving micro-slip lies in the different boundary
conditions which have to be satisfied for the stick and slip zones when the
configuration of these zones is not known in advance. Kalker’s approach to
this difficulty is to combine the separate conditions of stick and slip into
a single condition which is satisfied approximately throughout the contact area,
If the tangential traction is denoted by the vector q and the slip velocity by the
vector §, then we may combine the conditions of (8.4)-(8.7) in the statements

[Slq+ ups=0 (8.51)
and

lql <wp (8.52)
In a stick region § = 0 so that (8.51) is automatically satisfied; in a slip
region |q| = up in the opposite direction to §, so that (8.51) is again satisfied.
Thus the correct distributions of slip and traction satisfy equations (8.51) and
(8.52) throughout the whole contact area. A measure of the closeness with
which any proposed distribution of traction satisfies the boundary conditions
may be obtained by forming the integral over the contact area

1=f (I5lq + up$)* d4 (8.53)
A

Since the integral is positive everywhere and zero when the boundary conditions
are satisfied, the value of / is always positive and approaches zero when the
correct distribution of traction and corresponding slip are inserted. Thus, out
of any class of traction distributions, the ‘best fit’ is that which minimises 1.
Well developed techniques of nonlinear programming are available to assist in
performing this minimisation.

This approach, unlike those discussed previously, blurs the distinction between
stick and slip zones, which are now identified a posteriori: where || = 0 is
identified as a stick zone; where |g | = up is identified as a slip zone.
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Approximate distributions of traction may be found by the superposition
of distributions of the form expressed in equation (8.40). Alternatively they may
be made up of discrete traction elements in the manner described in §5.9. The
tangential displacements i, and i, are calculated by the methods of §3.6 and
substituted in equations (8.3) for the slip velocity §. The optimum distribution
of traction is then found from the minimisation of the integral I of (8.53).1
Values of Q,, O, and M, have been calculated for various combinations of creep
and spin £, &, and Y with elliptical contacts of varying eccentricity. (See
Kalker (1969) for a summary of results.)

Creep forces play an important role in the guidance and stable running of
railway vehicles. They arise as shown in Fig. 8.10. The point of contact is taken
to be at rest, so that the rail moves relative to it with the forward speed of the
vehicle V;. The wheel profiles are coned so that longitudinal creep £, can arise
when the two wheels of a pair are running on different radii. Longitudinal
creep is also a consequence of driving or braking a wheel. Lateral creep &,
arises if, during forward motion of the wheelset, the plane of the wheel is

Fig. 8.10. Creep motion of a railway wheel. Longitudinal creep ratio:
£ = (V3 — V1)/ V1 ; lateral creep ratio: £, =06V,/Vy = tan ¢;spin
parameter: Y = w(ab)V?/V; = {(ab)'/?/R} tan A.

1 More recently on grounds of versatility and dependability Katker (1979) has
abandoned the object function in the integral of equation (8.46) in favour of the
complementary energy principle of Duvaut & Lions (1972) discussed in §5.9. In
this approach the Eulerian formulation in §1 of this chapter is replaced by a
Lagrangian system in which the moving contact area is followed and the traction
is built up incrementally with time from some initial state until a steady state is
approached. Such transient behaviour is discussed further in §6.
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skewed through a small angle ¢ to the axis of the rail. Finally, since the
common normal at the point of contact is tilted at the cone angle X to the

axis of rotation, the wheel has an angular velocity of spin w, = w sin X relative
to the rail. For sufficiently small values of creep and spin the linear theory,
embodied in equations (8.41)-(8.43), is adequate to determine the creep
forces. At larger values the nonlinear theory, involving partial slip, must be
used. For large creep and spin the creep forces are said to ‘saturate’ and their
values are given by the ‘complete slip’ theory which does not depend upon
elastic deformation tangential to the surface.

We shall conclude this section with an assessment of creep theory in relation
to experimental observations. Surface tractions and associated internal stresses
have been investigated by photo-elasticity using large epoxy-resin models in
very slow rolling (Haines & Ollerton, 1963; Haines, 1964-5). The stick and
slip zones were clearly visible. In the slip zone the traction closely follows
Amonton’s Law of friction as assumed in the theory. The measured traction
in a circular contact transmitting a longitudinal force is compared with Carter’s
distribution (strip theory) and with Kalker’s (1967a) continuous distribution
in Fig. 8.11. The measured traction is very close in form to Carter’s distribution,
but the strip theory gives rise to an error in the size of the stick region. Kalker’s
method removes the sharp distinction between stick and slip, but in view of
the small number of terms employed gives a remarkably good approximation to
the measured traction.

Fig. 8.11. Tangential traction ¢(x) on centreline of circular contact
transmitting a longitudinal force Q, = 0.72uP. Solid line - numerical
theory, Kalker (1967a); chain line - strip theory; circle - photo-elastic
measurements.
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Creep experiments are usually performed by accurately measuring the distance
traversed by a rolling element in precisely one revolution. Laboratory experiments
by Johnson (1958a & b, 1959) in slow rolling using good quality surfaces are
generally in good accord with present theory, The case of longitudinal creep is
illustrated in Fig. 8.12 for a circular contact (a ball rolling on a plane). The
influence of spin is governed by the non-dimensional parameter x = YR /uc,
where

/R =4{(1/RY) + (1RY) + (1/R3) + (1/R3)} and ¢ = (ab)'?
For a ball of radius R rolling on a plane, R = 2R and ¢ = a. It is clear that
increasing spin has the effect of reducing the gradient of the linear part of the
creep curve, i.e. reducing the creep coefficient. The full lines denote Kalker’s
numerical nonlinear theory, which is well supported by the experiments. For
no spin (x = 0), chain and dotted lines represent respectively the strip theory
(eq. (8.49)) and Johnson’s approximate theory (eq. (8.45)). The discrepancies,
of opposite sign in each case, are not large, particularly in view of the practical
uncertainty in the value of u. Provided that the traction force Q, is less than
about 50% of its limiting value (Q,/uP < 0.5), the linear theory, which
assumes vanishingly small slip, provides a reasonable approximation. The predic-
tions of Wernitz’ complete slip theory, which neglect the tangential elastic
compliance of the rolting bodies, have been added by the broken lines in Fig.
8.12. When there is no spin (x = 0) this theory is entirely inadequate since it

Fig. 8.12. Longitudinal creep combined with spin: theories and
experiment (circular contact). Solid line - numerical theory, Kalker
(1967a); large-dashed line ~ complete slip theory, Wernitz (1958);
small-dashed line - approximate theory, eq. (8.45); chain line - strip ,
theory eq. (8.49).
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predicts zero creep when @, < uP. With increasing spin, however, it becomes
more satisfactory and when x = 5 it is indistinguishable from Kalker’s complete
numerical theory.

The case of transverse creep is not so straightforward, since spin itself
produces a transverse tangential force, known in the automobile industry as
camber thrust. In consequence the creep curves are asymmetrical with respect
to the origin (Fig. 8.13). This effect is not predicted at all by the theory of
complete slip since it is entirely due to tangential elastic compliance of the
surface. The complete slip theory, therefore, shows a very large error in this
case, even when the spin is large. Once again Kalker’s numerical results are
well supported by experiment in the range where accurate measurements have
been made.

The variation in the transverse force with spin when the transverse creep
is zero, i.e. the camber thrust (given by the intersection of the creep curves in
Fig. 8.13 with the axis £, = 0), is plotted in Fig. 8.14. It rises to a maximum
at (YR /uz) ~ 2 and falls, with increasing spin, to zero as complete slip is
approached. This force arises not only in cornering of a vehicle, but when the
axis of rotation of a body is inclined, i.e. ‘cambered’, to the surface on which
it rolls.

Fig. 8.13. Transverse creep combined with spin: theories and experiment
(circular contact). Solid line -~ numerical theory;large-dashed line -
complete slip theory; small-dashed line - approximate theory, eq. (8.46).
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Fig. 8.14. Camber thrust: transverse tangential force due to spin (circular
contact). Kalker’s numerical theory compared with experiment. Broken
line - linear theory, eq. (8.42).
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Under engineering conditions, such as are encountered on railway tracks
for example, the creep coefficients are observed to be much less than their
theoretical values (Hobbs, 1967). A serious cause of this discrepancy lies in
the lubricating effect of contaminant films, particularly oil or grease, on the
rolling surfaces (Halling & Al-Qishtaini, 1967). Surface roughness and vibration
are also likely causes of reduced creep coefficients in practice.

8.5 A ball rolling in a conforming groove

A ball rolling in a groove whose cross-sectional radius of curvature
p is fairly close to that of the ball itself presents a special case of importance
in rolling bearing technology. Under normal load the contact area is an ellipse
which is elongated in the transverse direction. With close conformity the contact
area is no longer planar but shares the transverse curvature of the ball and
groove; surface points in different transverse positions on the ball have different
peripheral speeds which leads to micro-slip. To a reasonable approximation
the peripheral velocity of the ball is given by

Vi=w(R —y*/2R) (8.54)

where R is the radius of the ball, w is its angular velocity. Thus the creep ratio
can be expressed by

n—v, ANES -
= = _—— = — 55
)= 7R (1 wR) gz LTV IR (8:53)
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Under free rolling conditions there is no net tangential force exerted so that the
contact area must be split in three zones: a central zone (¥ small) where the slip
is positive and two outer zones (y large) where the slip is negative, Three parallel
wear bands were observed in unlubricated ball-bearing races by Heathcote
(1921), who developed a theory on the basis of complete slip, i.e. by neglecting
the elastic compliance of the ball and race. He deduced that the rotation of the
ball would be resisted by a frictional moment M given by

2

i 08u — (8.56)

where 2b is the transverse width of the contact ellipse.

The influence of elastic compliance is not generally negligible however, and
can be conveniently analysed by strip theory.

The dimensions of the contact ellipse @ and b, and the maximum contact
pressure p, are given by the Hertz theory. A typical strip is shown in Fig. 8.15
to which the Carter theory is applied. A stick region at the leading edge, whose
centre is located at x = —d, is followed by a slip region at the trailing edge.

Equation (8.24) for the creep ratio of the strip is now substituted into equation
(8.55) to give

d
2o ) (5.57)

Fig. 8.15. Strip theory applied to a ball rolling in a conforming groove.
Pure rolling takes place on two lines at y = tvb; elsewhere micro-slip
occurs: backwards where y <b and forwards where y > vb.
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where
b2E* b2pE(e)
4upoR*  2uaR(2p —R)

and
72 = 2R2£0/b2

No micro-slip occurs at y = +yb and the extent of slip elsewhere is given by

(8.57) provided d/a, <1. Strips at larger values of y slip completely whereupon
dja, = 1. To determine 7y we use the condition of no resultant tangential force.
From equation (8.25) the tangential force exerted by the strip per unit width is

SR ﬁ(z—i)=Z ai(fza—*—i (8.58)
0 2Hpoa*a* a, 2#p° a a a)
For free rolling the total traction torce
b
Q =". Q*dy=0 (8.59)
—b

This condition determines the value of v, the position of the zero slip bands,

Fig. 8.16. Resisting moment on a ball rolling in a conforming groove,
eq. (8.60). Broken line - limit for vanishingly small slip; chain line -
complete slip, eq. (8.56), Heathcote (1921).
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and hence the overall creep ratio £,. The moment resisting rolling is then
found by

b b
M= f Q*(R-y*2R) dy = — f Q*(*/2R) dy (8.60)
—b —b

where the integral is a function of the geometric parameter I'. The result of
computing this integral is shown in Fig. 8.16. When the conformity is close or
the coefficient of friction is small, I is large, and the moment approaches the
result for complete slip given by equation (8.56). Theoretical stick and slip
regions are also shown in Fig. 8.16.

8.6 Transient behaviour in rolling

So far in this chapter we have considered the contact stresses which
arise in steady rolling, that is when the forces and contact geometry do not
change with time and when rolling has proceeded for a sufficient time for the
stress field to be no longer influenced by the initial conditions. Various cases
of unsteady rolling contact of cylinders in plane strain have been examined in
a sequence of papers by Kalker (1969, 1970, 19715).

Since the strain field is changing with time, the term 9iz, /9¢ in equation
(8.1a) for the particle velocity is no longer zero and appears in the expression
for the velocity of slip. In plane strain there is no spin and no motion in the
y direction so we can omit the suffix x, and we shall restrict the discussion to
similar elastic bodies. Equation (8.34) for the slip velocity then becomes

olu(x, 1) . ou(x, t)
ot

§(x, ) = VE() + 2V

dit(x, 1) 0 ~
= Vi) + 2V +2— (@(x, 1) — (0, 1))
ox ot

20u(0, 1)
ot

Difficulty arises in plane strain with the last term in equation (8.61), since the
absolute value of (0, #) depends upon the choice of datum for displacements.
This choice must be governed by the bulk geometry of the bodies in any parti-
cular case. If the length of the contact perpendicular to the rolling direction is
well defined and denoted by 2b (b > a), we can take as an approximation to
u(0, 1) the displacement at the centre of a rectangle 2b x 2a due to a uniform
traction g = Q/4a, i.e.

4,2
(0, 1) = 2LI—L—E)Q([) {11 ~v) + In (2b/a)}
m

+

(8.61)
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where Q is the tangential force per unit axial length. The value of #(0, #) will
not be very sensitive to the precise distribution of traction. In those cases where
the normal load, and hence a, remain constant

9i(0,1)  2(1—v?) { 1 (2b); dQ(r)
= +lnf—|; —
ot nE dt
This term enters into the calculation of the transient creep; but the difficulty
does not arise if the traction only is required.

During rolling we expect the interface to have stick and slip zones
governed by the conditions (8.4)~(8.7) in which the slip is now related to the
elastic displacements by equation (8.61). The distributions of traction g(x, 1)
and the value of the creep ratio £(#) which satisfy these conditions must be
found step by step, starting from given initial conditions, and following the
prescribed loading history of the particular problem. The reader is referred to
Kalker (1969, 1970, 1971b) for the technique of solution; the results of two
cases only will be discussed here.

(8.62)

1—vw a

(a) Constant tractive force starting from rest
If a tractive force less than limiting friction is applied to cylinders at

rest, micro-slip takes place at both edges of contact and the tangential traction
is distributed according to equation (7.28), as shown in Fig. 8.17 (I = 0).
Assuming no-slip (¢ = =) the traction would rise to an infinite value at both
edges, given by equation (7.22). The cylinders are now permitted to roll. In the
steady-state slip is restricted to the trailing edge and the traction is distributed
according to the sum of (7.23) and (8.22). The steady-state traction without
slip is given by (8.27). Between the start of rolling and the steady state, the
slip regions and tractions vary transiently with /, the distance rolled. Since
inertia effects are ignored, 8/d¢ = V9/3dl The traction distributions at various
stages in the process are shown in Fig. 8.17 for the case of no slip (¢ ~> =) and
also for the case of partial slip in which Q = 0.75uP. With no slip the singularity
in traction, which is initially located at the leading edge, moves through the
contact with the rolling velocity and finally disappears at / = 24 leaving a distri-
bution of traction which is close to that in the steady state. When slip is
permitted, the initial application of Q causes slip at both edges but, as rolling
proceeds, no further slip occurs at the leading edge. The original traction distri-
bution moves through the contact with the rolling velocity until it merges with
the trailing slip zone at / = 0.6a. The steady state is virtually reached and estab-
lished by I = 1.6a.

The behaviour might be described qualitatively by saying that the interfacial
points, initially located at the leading edge, and their associated traction move
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Fig. 8.17. Transient rolling from rest under the action of constant
normal and tangential forces: distributions of tangential traction g(x)
with distance rolled L Chain line - no slip (4 = ©°); solid line - with
partial slip (Q = 0.75uP).
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through the contact until they are swallowed up by the slip region at the trailing

edge, at which instant a good approximation to the steady state has been
reached.

(b ) Oscillating tractive force: Q(t) = Q* cos wt
An oscillating tangential force whose period 2n/w is comparable with
the time of passage of the surfaces through the contact zone 2a/V will induce

Fig. 8.18. Steady cyclic variations of traction due to an oscillating
tangential force. O(t) = Q* cos wt. (a) w = V/a;(b) w = 2.405V/a.
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tractions which are appreciably different from those in steady rolling. Transient
effects occur at the start, which depend upon the initial state of traction, but
after a few cycles the system settles down to a steady cyclic state. By way of
example Fig. 8.18(a) shows the fifth cycle at a frequency w = V/a, from which
it is evident that a steady cyclic state has been reached in which g(w? + 7) =
—q(wt). No slip has been permitted in this example and, as expected, an infinite
traction oscillating in sign occurs at the trailing edge, which must in fact be
relieved by micro-slip. However Kalker has shown that there are a series of
specific frequencies w,, at which no infinite traction arises, given by

Jo(wra/V)=0 (8.63)
where J, = Bessel function of the first kind. The traction distributions in the
steady cyclic state corresponding to the first such frequency: w; = 2.405V/a,
are shown in Fig. 8.18(b). Under these conditions no slip occurs at any time
provided Q*/uP is less than about 0.4.

The complexities of transient creep analysis have so far restricted exact
solutions to two-dimensional cases. Three-dimensional problems involving
lateral creep and spin in addition to longitudinalcreep can be analysed approxi-
mately, however, using the elastic foundation model described in the next
section.

8.7 Elastic foundation model of rolling contact

We saw in §4.3 how normal elastic contact could be greatly simplified
by modelling the elastic bodies by a simple Winkler elastic foundation rather
than by elastic half-spaces. The same expedient can be applied to the tangential
tractions which arise in rolling contact. The two rolling bodies can be replaced
by a rigid toroid having the same relative principal curvatures, rolling on an
elastic foundation of depth 2 which in turn is supported on a flat rigid substrate.
The elasticities of both bodies are represented by the moduli of the foundation:
K, in normal compression and K, in tangential shear.

The shape and size of the contact ellipse and the contact pressure could be
found by the Hertz theory, but it is more consistent to use the elastic foundation
model in the manner described in §4.3. The tangential surface displacements
uy and u, are related to the components of tangential traction by

4x = (Kg/M)ix; qy=(Kq/h)uy (8.64)
Such a foundation is sometimes referred to as a ‘wire brush’ model since
individual bristles might be expected to deform according to (8.64) indepen-
dently of their neighbours. The conditions for slip and stick expressed in
equations (8.1)-(8.7) still apply and, together with the condition that the
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traction is zero on the leading edge, are used to find the distribution of
tangential traction throughout the contact area. Since, by (8.64), the traction
at any point depends only upon the displacement at that point, the slip
equations (8.3) can be integrated directly to find the traction. Under transient
conditions the variation in the displacements with time must be followed step
by step from the initial conditions to the steady state. The numerical proce-
dure is very straightforward. Kalker (1973) has discussed the procedure in
detail with a view to ensuring that the results from the foundation model
correspond as closely as possible to exact solutions based on the elastic half-
space.

As am example we will consider the tractive rolling contact of long cylinders
analysed exactly in §3. The elastic displacements of both surfaces are com-
bined in the displacement i, of the foundation so that in a stick zone equations
(8.3) and (8.4) reduce to

Oty

£+ Eln S, /V' =0 (8.65)

We can substitute for #, from equation (8.64) to give a simple differential
equation for g(x) which, when integrated, with the condition that g, = 0 at
x = —a, gives

4x = _(qux/h)(a + x) (866)
Thus the traction increases linearly from the leading edge and, if slip is entirely
prevented, it is released suddenly at the trailing edge. In contrast to the exact
solution, this traction is still finite at the trailing edge. The total tangential force
follows directly from the integration of (8.66) with the result:

Qx = _2quxa2/h (867)
In practice slip will occur at the trailing edge where the pressure falls to zero
but the traction given by (8.66) does not. For consistency we will take the
parabolic pressure distribution given by elastic foundation theory in equation
(4.58). A stick region of width 2¢ extends from the leading edge. At the point
where slip begins (x = 2¢ —a) .

Qx = (Kq/h)szc =P = 4.“(Kp/2Rh)(d —c)c
which gives

A=21—c/a) =K ER/Kpua (8.68)
The traction force, found from the sum of the traction in both stick and slip
zones, is then given by

Oc/uP=—IN1 — X +0%) (8.69)
This equation and equation (8.67) are the counterparts of the exact solutions
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(8.26) and (8.28); they are compared in Fig. 8.7. In order for the creep
coefficient, i.e. the linear gradient, of the foundation model to coincide with
that of the half-space solution, the tangential modulus of the foundation K,
should be 2/3 the normal modulus K. Thus we should take K,a/h ~ 1.1E*.%

In a three-dimensional contact undergoing longitudinal creep only, each
elemental strip parallel to the x-axis behaves like the two-dimensional contact
analysed above, The traction rises linearly from zero at the leading edge until
it reaches the value up when slip starts. If all slip is prevented, integrating the
traction over the contact ellipse gives

_?.(_Zé[_(ﬂ 8.70
Qx_3(h)£x ( )

To agree with the exact result (8.41) the foundation modulus K, must be
given by

Ka ser 31— e
—h_"—sGCu—s(l V)E*Cyy (8.71a)

where values of Cy, for different elliptical shapes are quoted in Appendix 5. An
identical expression, with Ci; replaced by Cs,, is obtained in pure lateral creep.
To obtain agreement with exact theory in pure spin requires

Kqa 4 (b

1/2
—) (1 =v)E*Cy3 (8.71b)
a

h m

It is clear that a single value of the foundation modulus will not secure agree-

ment over the whole range of creep conditions or (b/a). However, if we take

(Kga/h) = 1.1E*, as in the two-dimensional case, equation (8.7 1a) gives

(for v = 0.3)Cy; = Cy, = 4.2 and equation (8.71b) gives Cp3 = 1.2(a/b)"/?

which compare reasonably with the values in the table except where b < a.
If, in the case of pure longitudinal or lateral creep, slip is assumed to occur

when the tangential traction reaches its limiting value up (where p is given by

eq. (4.54)) the boundary between the stick and slip regions is found to be

a reflexion of the leading edge as observed by experiment.

8.8 Pneumatic tyres

A wheel having a pneumatic tyre is an elastic body which, in rolling
contact with the ground, exhibits most of the phenomena of creep and micro-
slip which have been discussed in this chapter. In fact, the tangential force and
twisting moment due to lateral creep, usually referred to as the ‘cornering

+ Although we can use the combined modulus £* to account for the e}asticitie;s of
both bodies, the foundation model is incapable of handling t}}e tractions which
arise from a difference in their elastic properties as discussed in §2.
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force’ and ‘self-aligning torque’ play a significant role in the steering character-
istics of a road vehicle. Clearly the complex structure of a tyre does not lend
itself to the analytical treatment which is possible for solid isotropic bodies;
nevertheless simple one-dimensional models have been proposed which do
account for the main features of the observed behaviour.

A thin flexible membrane of toroidal shape with internal pressure, when
pressed into contact with a rigid plane surface, has a contact area whose approxi-
mately elliptical shape is related to the intersection of the plane with the unde-
formed surface of the toroid and whose area is sufficient to support the contact
force by the internal pressure. An aircraft tyre, which has very little tread,
approximates to a thin membrane. Referring to Fig. 8.19 the apparent dimensions
of the contact ellipse @’ and b' are related to the vertical deflexion of the wheel by

a'={(2R—8)8}'%, b'={(w—8)8}'"
The apparent area of contact is

a'b' =7as{(w—8)(2R —8)}'*27wRs (8.72)
In reality the tyre is tangential to the flat surface at the periphery of the contact,
so that the real contact dimensions 2 and b are less than e’ and »’. The true area
is found to be about 85% of the apparent value; the deflexion is found to be
approximately proportional to the load with 80-—-90% of the load taken by the
inflation pressure. The stiff tread and cross-section shape of a motor tyre, on
the other hand, result in a contact path which is roughly rectangular, having
a constant width equal to the width of the tread and having slightly rounded

ends. The load is transmitted from the ground to the rim through the walls as
shown in Fig. 8.20. When the ground reaction P is applied to the tyre the tension

Fig. 8.19. A pneumatic tyre as a thin inflated membrane.
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in the walls is decreased with a consequent increase in curvature, thereby exerting
an effective upthrust on the hub.

On the membrane model the contact pressure distribution would be uniform
and equal to the inflation pressure, whereas a solid tread would concentrate the
pressure in the centre, The effect of bending stiffness of the tread is to introduce
pressure peaks at the ends of the contact (see §5.8) and support from the walls
gives high pressures at the edge. The relative importance of these different
effects depends upon the design of tyre.

Creep in free rolling

Like a solid elastic wheel in contact with a rigid ground, a pneumatic.
tyre will exhibit longitudinal creep if the circumferential strain in the contact
patch is different from that in the unloaded periphery. Following membrane
theory, the centre-line of the running surface is shortened in the contact patch
by the difference between the chord AB and the arc AB. By geometry this
gives a strain, and hence a creep ratio:

ou,
£, =——=—8/3R (8.73)
ox
This equation assumes that behaviour of the whole contact is governed by the
centre-line strain and that there is no strain outside the contact, therefore the
fact that it agrees well with observations must be regarded as somewhat
fortuitous,

Transverse tangential forces from sideslip and spin
When the plane of a wheel is slightly skewed to the plane of rolling,
described as “sideslip’ or ‘yaw’, transverse friction forces and moments are

Fig. 8.20. Contact of an automobile tyre with the road: () unloaded,
(b) loaded.
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brought into play; they also arise owing to spin when turning a corner or by
cambering the axis of the wheel at an angle to the ground. The behaviour is
qualitatively the same as that for solid bodies discussed in §4. The contact is
divided into a stick region at the leading edge of the contact patch and a slip
region at the trailing edge. The slip region spreads forward with increasing
sideslip or spin.

A one-dimensional model of the resistance of a tyre to lateral displacement
is shown in Fig. 8.21. The lateral deformation of the tyre is characterised by
the lateral displacement u of its equatorial line, which is divided into the
displacement of the carcass # and that of the tread #;. Owing to the internal
pressure the carcass is assumed to carry a uniform tension 7. This tension
resists lateral deflexion in the manner of a stretched string. Lateral deflexion
is also restrained by the walls, which act as a spring foundation of stiffness K per
unit length. The tread is also assumed to deflect in the manner of an elastic
foundation (‘wire brush’) as discussed in §7. The tyre is deflected by a transverse
surface traction g(x) exerted in contact region —a < x < a. The equilibrium
equation is:

2

u
Ka.—T Ex—; = q(x) = Ky (8.74)

where K is the tread stiffness. The lateral slip velocity in the contact region is
given by equation (8.35). The ground is considered rigid (u, = 0) and the
motion one-dimensional, so that we can drop the suffixes. Thus

IV =E+y )+% 8.75
§/V=5§+Y(x/a . (8.75)

Fig. 8.21. The ‘stretched string’ model of the lateral deflexion of a tyre.
The carcass and the tread resist lateral deflexion as elastic foundations
of stiffness K and K.
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In a stick region s = 0.

Various approaches to the solution of the problem have been proposed.
Fromm (1943) took the carcass to be rigid (u, = 0) so that all the deformation
was in the tread (u = u,). Equations (8.74) and (8.75) can then be solved
directly throughout the contact region for any assumed pressure distribution.
The carcass deflexions are clearly not negligible however and it is more realistic
to follow von Schlippe (1941) and Temple (see Hadekel, 1952) who neglected
the tread deflexion compared with the carcass deflexion (u; = 0,u = u.) as
shown in Fig. 8.22. Equation (8.74) then becomes

2

U=\ — = qx)/K (8.76)
dx q c .

where the ‘relaxation length’ X = (T/K)'/2. To develop a linear theory we shall
assume vanishingly small slip, so that in equation (8.75) § = 0 throughout the
contact region. Taking the case of sideslip first, from (8.75) the displacement
within the contact region is given by

u=u; —&x
where u; is the displacement at the leading edge (x = —a). Outside the contact
region q(x) = 0 so that the complementary solution to (8.76) gives

u = u; exp {(a + x)/\}
ahead of the contact and

u=uy exp {(a—x)N)
at the back of the contact.

Fig. 8.22. Traction distribution for a tyre with yaw angle £ and no slip
in the contact patch: von Schlippe’s theory.
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From our discussions in §4 of the location of slip and stick regions, it is clear
that the displacement gradient must be continuous at the leading edge, for which
uy = —AE. The deflected shape of the equatorial line is shown in Fig. 8.22
together with the traction distribution. In the contact patch itself

q'(x)=Ku=—KE\+a+x)
which corresponds to a force Q' = —2K.a(\ + ). At the trailing edge (x = a)
the discontinuity in du/dx gives rise to an infinite traction ¢"(z) which corres-

ponds to a concentrated force Q" of magnitude —2K £N(A + ). The total
cornering force is thus

A 2
Q=0 +Q"=—-2K ta* <—+ 1) (8.77)
a
Taking moments about O gives the self-aligning torque to be
a }\ }\2
M,= q(x)x dx = —2K £&a° (% +— +—5) (8.78
—a a a

As with solid bodies, the infinite traction at the trailing edge necessitates slip
such that the deflected shape u(x) has no discontinuity in gradient and satisfies
the condition g(x) = up(x) within the slip region. Calculations of the cornering
force Q and self-aligning torque M, by Pacejka (1981) assuming a parabolic
pressure distribution and taking A = 3q are shown in Fig. 8.23.

Fig. 8.23. Cornering force Q and self-aligning torque M, by von
Schlippe’s theory (A = 3a) from Pacejka (1981). Broken line - linear
theory (no slip), egs. (8.77), (8.78).
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In the case of pure spin, equations (8.75) demands that the deflected shape in
the stick region should be parabolic, i.e.

u=u;+Yx*/a
Proceeding as before to ensure continuity at x = —a leads to a distribution of
traction and to a resultant transverse force (‘camber thrust’)

2
Q =—2K ya* (% +3+‘%) and M,=0 (8.79)
Equations (8.77)-(8.79) are equivalent to the linear (small slip) equations
(8.41)-(8.43) for solid bodies.

The analysis outlined above has been extended by Pacejka (1981) to include
the elasticity of the tread. Some investigators have felt that the representation
of the carcass by a ‘string’ in tension is inadequate and have included a term
proportional to (d*u/dx*) in the equilibrium equation (8.74) to represent the
flexural stiffness of the carcass (see Frank, 1965). However the influence on
the overall conclusions of the theory is relatively minor since the values of the
elasticity parameters of the tyre (K., Ky, A etc.) have to be found by experiment
rather than directly from the structure of the tyre.

Longitudinal creep due to driving or braking can be analysed in the same
way. If the cover is regarded as an ‘elastic belt’ restrained circumferentially by
the elastic walls, an equilibrium equation similar to (8.75) is obtained for the
circumferential displacements of the belt. Recent reviews of tyre mechanics
have been published by Clark (1971) and by Pacejka & Dorgham (1983).
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Rolling contact of inelastic bodies

9.1 Elastic hysteresis

No solid is perfectly elastic. During a cycle of loading and unloading
even within the so-called elastic limit some energy is dissipated. The energy loss
is usually expressed as a fraction « of the maximum elastic strain energy stored
in the solid during the cycle where « is referred to as the ‘hysteresis loss factor’,
For most metals stressed within the elastic limit the value of @ is very small,
usually less than 1%, but for polymers and rubber it may be much larger.

The material of bodies in freely rolling contact undergoes a cycle of loading
and unloading as it flows through the region of contact deformation (see Fig.
9.1). The strain energy of material elements increases up to the centre-plane
(x = 0) due to the work of compression done by the contact pressure acting
on the front half of the contact area. After the centre-plane the strain energy

Fig. 9.1. Deformation in rolling contact. An element of material
experiences the cycle of reversed shear and compression 4-B-C-D-F.
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decreases and work is done against the contact pressure at the back of the
contact. Neglecting any interfacial friction the strain energy of the material
arriving at the centre plane in time d# can be found from the work done by the
pressure on the leading half of the contact. For a cylindrical contact of unit
width

a
dw = er p(e)x dx
0
where w(= V/R) is the angular velocity of the roller. Taking p(x) to be given
by the Hertz theory

.2
W= —Paw (9.1)
3m
where P is the contact load. If a small fraction « of this strain energy is now
assumed to be dissipated by hysteresis, the resultant moment required to maintain

the motion is given by equating the net work done to the energy dissipated, then

3n
or
= =0 — .
HR=or T Y 3R

where ug is defined as the coefficient of rolling resistance. Thus the resistance to
rolling of bodies of imperfectly elastic material can be expressed in terms of their
hysteresis loss factor. This simple theory of ‘rolling friction’ is due to Tabor
(1955).F7 Performing the same calculation for an elliptical (or circular) contact
area gives the result.
M,

=— =
HR 2R R

where a is the half-width of the contact ellipse in the direction of rolling. For
a sphere rolling on a plane, a is proportional to (PR)*’® so that the effective
rolling resistance Fr = M, /R should be proportional to P**R™>/3_ This relation-
ship is reasonably well supported by experiments with rubber (Greenwood et al.,
1961) but less well with metals (Tabor, 1955).

The drawback to this simple theory is twofold. First, the hysteresis loss factor
« is not generally a material constant. For metals it increases with strain (2/R),
particularly as the elastic limit of the material is approached.

a

(9.3)

Ske

1 The use of an elastic hysteresis loss factor in rolling is similar in principle to the
use of a coefficient of restitution e in impact problems (see §11.5). The fractional
energy loss in impact is given by 1 —e?.
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Second, the hysteresis loss factor in rolling cannot be identified with the loss
factor in a simple tension or compression cycle. The deformation cycle in
rolling contact, illustrated in Fig. 9.1, involves rotation of the principal axes of
strain between points B, C and D, with very little change in total strain energy.
The hysteresis loss in such circumstances cannot be predicted from uniaxial
stress data although a plausible hypothesis has been investigated for rubber by
Greenwood et al, (1961) with reasonable success.

A rigid sphere rolling on an inelastic deformable plane surface would produce
the same deformation cycle in the surface as a frictionless sphere sliding along
the surface. In spite of the absence of interfacial friction the sliding sphere
would be opposed by a resistance to motion due to hysteresis in the deform-
able body. This resistance has been termed the ‘deformation component’ of
friction. Its value is the same as the rolling resistance Fy given by equation
(9.3). Experiments by Greenwood & Tabor (1958) with a steel ball rolling
and sliding on a well-lubricated rubber surface confirm this view. They suggest
that the tread of motor tyres should be made from high hysteresis rubber to
introduce a large deformation resistance when skidding on the rough surface of
aroad in wet and slippery conditions.

To formulate a more sophisticated theory of inelastic rolling contact it is
necessary to define the inelastic stress-strain relations of the solids more
precisely.

9.2 Elastic-plastic materials: shakedown

In this section we shall consider the behaviour in rolling contact of
solids which are perfectly elastic up to a yield point: Y in simple tension or
compression, k in simple shear, Beyond yield they deform in a perfectly plastic
manner according to the stress-strain relations of Reuss.

(a) Onset of yield

In free rolling, within the elastic limit, the stresses in rolling contact
are given by the Hertz theory, provided the two bodies are elastically similar.
The effect of dissimilar elastic properties upon the elastic-plastic behaviour,
however, is generally small and will be neglected. The onset of yield in free
rolling is therefore the same as in frictionless normal contact discussed in §6.1.
Yield first occurs at a point beneath the surface when the maximum contact
pressure py = cY, where ¢ is a constant (=1.6) whose exact value depends upon
the geometry of the contact and the yield condition used according to equations
(6.4), (6.5), (6.6), (6.8) or (6.9).

In tractive rolling the shear traction at the interface influences the point of

first yield. The case of complete sliding, where Q = uP, has been examined in
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87.1 (see Figs. 7.3 & 7.4). With increasing friction the point of first yield
approaches the surface. In tractive rolling when Q < uP, slip only takes place
over the rear part of the contact area. The stress components G and 7,,, at the
surface of rolling cylinders due to the tangential traction g(x) have been found
in §8.3 and are shown in Fig. 9.2. Varying the value of u whilst keeping the
traction coefficient Q/P constant causes the micro-slip zone to change in size
and the distribution of traction to change as shown in Fig. 9.2(a). When the
point of first yield lies beneath the surface it is not much influenced by changes
in distribution of surface traction. When first yield occurs at the surface the
critical point lies at the boundary between the stick and slip zones shown in
Fig. 9.2(b). With increasing friction the contact pressure to reach first yield
falls, as shown by the broken line in Fig. 9.4.

Fig. 9.2. Stresses at contact of cylinders rolling with tangential traction
0Oy = 0.2P. (a) Tangential surface tractions for varying u; (b) Surface
stresses 0y and T2, for u = 0.3,
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(b) Repeated rolling - shakedown

Most practical applications of rolling contact such as roller bearings or
railway track have to withstand many repeated passes of the load. If, in the first
pass, the elastic limit is exceeded some plastic deformation will take place and
thereby introduce residual stresses. In the second passage of the load the
material is subjected to the combined action of the contact stresses and the
residual stresses introduced in the previous pass. Generally speaking such
residual stresses are protective in the sense that they make yielding less likely
on the second pass. It is possible that after a few passes the residual stresses
build up to such values that subsequent passes of the load result in entirely
elastic deformation. This is the process of shakedown under repeated loading,
whereby initial plastic deformation introduces residual stresses which make
the steady cyclic state purely elastic. To investigate whether shakedown occurs
we can appeal to Melan’s theorem (see Symonds, 1951) which states: if any
time-independent distribution of residual stresses can be found which, together
with the elastic stresses due to the load, constitutes a system of stresses within
the elastic limit, then the system will shakedown. Conversely, if no such distri-
bution of residual stresses can be found, then the system will not shakedown
and plastic deformation will occur at every passage of the load.

We shall examine the case of an elastic cylinder rolling freely on an elastic-
perfectly-plastic half-space (see Johnson, 1962b). If the elastic limit is not
exceeded the contact area and the contact pressure are given by the Hertz
theory. The stresses within the half-space are given by equations (4.49) and
are shown by the full lines in Fig. 9.3 for a constant depth z = 0.5a. We now
consider possible distributions of residual stress (denoted by suffix r). which can
remain in the half-space after the load has passed. The assumption of plane
deformation eliminates (7, ); and (7,,;);, and makes the remaining components
independent of y. If the plastic deformation is assumed to be steady and con-
tinuous the surface of the half-space will remain flat and the residual stresses
must be independent of x. Finally, for the residual stresses to be in equilibrium
with a traction free surface (0,); and (7, ), cannot exist. The only possible
system of residual stresses, therefore, reduces to

(O’x)r=f1(2), (Oy)r=f2(2) }
(0,)r= (Txy)r = (Tyz)r =(T;x)=0

The principal stresses due to the combination of contact and residual stresses
are given by

01 = %{Ux + (0x) T o} + % [{ox + (0x): — 02}2 + 4sz2]1/2 (9.50)
02 = %{Gx + (0x): + 05} _% [{ox + (0x):— 02}2 + 4sz2]1/2 (9.5b)
oy = Wo,+0o,}+(0,), (9.5¢)

(9.4)
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Following Melan’s theorem, we can choose the residual stresses to have any
value at any depth in order to avoid yield. Thus (o, ), can be chosen to make
03 the intermediate principal stress. Then to avoid yield, by the Tresca criterion,
%(01 - 02)2 <k’
where k is the yield stress in simple shear, i.e.
éll{ox+ (Ux)r_az}2 + sz2 <k? . (9.6)
Examining this expression shows that it cannot be satisfied if 7,, exceeds k, but
it can just be satisfied with 7,, = k if we choose (o,.), = 0, — 0,.. Thus the
limiting condition for shakedown occurs when the maximum value of 7,,,
anywhere in the solid just reaches k.

From equation (4.49) the maximum value of 7, is found to be 0.25p, at
points (£0.87a, 0.50a). Thus for shakedown to occur

Po < 4.00k (9.7)
The same result is found if the von Mises criterion of yield is used. The residual
stresses at a depth 0.50a necessary to ensure shakedown are

(0x)y=—0.134py; (0,),=—0.213p, (9.8)
By von Mises criterion the value of p¢ for first yield is 3.1k. Thus the ratio of the

Fig. 9.3. Rolling contact of elastic-plastic cylinders, Solid line - elastic
stresses at depth z = 0.54. Broken line - with addition of (0, ); and
(0y); for shakedown.
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shakedown limit load to the elastic limit load is given by

}é _ (Po)82
Py (Po)Y2

from which it follows that the load must be increased by more than 66% above
the first yield load to produce continuous deformation with repeated loading
cycles. The modification to the stresses at z = 0.5z by the introduction of the
residual stresses is shown by the broken lines in Fig. 9.3.

A similar analysis can be made for tractive rolling if the elastic contact stress
field is known (Johnson & Jefferis, 1963). Under conditions of complete slip
or sliding the stresses in the half-space due to the frictional traction are given by
equations (7.5)~(7.8). The residual stresses are still given by (9.4) and hence the
shakedown limit is still determined by the maximum value of 7., . The point of
maximum 7, lies below the surface provided Q/P < 0.367. At larger values of
traction the critical stress lies in the surface layer. The influence of tangential
traction on the shakedown limit is compared with its influence on initial yield
in Fig. 7.4. The interval between the load for first yield and the shakedown
limit load becomes narrower with increasing tangential force. The effect of
partial slip on initial yield and shakedown is shown in Fig. 9.4. Shakedown of
a wheel rolling on a rigid plane has been studied by Garg et al. (1974).

= 1.66 (9.9)

Fig. 9.4. Cylinders rolling with tangential traction Q, = 0.2P. Broken
line - first yield; solid line - shakedown. (Tresca yield criterion.)
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The application of Melan’s Theorem to three-dimensional rolling bodies is
much more complicated since all components of residual stress can arise, and
since a flat surface does not remain flat after deformation. If we consider the
plane of symmetry (¥ = 0) of a ball rolling on an elastic-plastic half-space, by
symmetry (7y,,); = (7,;)r = 0, but a residual shear stress (7, ), can exist. How-
ever 7,, due to a purely normal contact load has equal and opposite maxima on
either side of x = 0. Thus yield cannot be inhibited by the addition of a uni-
directional residual stress. It follows, therefore, that the shakedown limit is
again governed by the maximum value of (7., ),.T If the reduction in contact
pressure due to the formation of a shallow plastic groove is neglected then
(Tax)max = 0.21p¢, whereupon for shakedown

Pos 4.7k (9.10)
By von Mises, the value of p, for first yield is 2.8k, hence

Py (47V

—=(— =47 9.1

Py 2.8

which is a much larger factor than in the two-dimensional case.

The mechanism of shakedown may be appreciated qualitatively from Fig. 9.1.
First yield occurs in the element at C on the centre-line by shear on planes at
45° to the axes: the element is compressed normal to the surface and attempts
to expand parallel to it. Since all elements at that depth are plastically deformed
in this way in turn, their Jateral expansion must be annulled by the development
of residual compressive stresses acting parallel to the surface. When these residual
stresses are fully developed the elements no longer yield at C and normal com-
pression of the surface ceases, The alternating ‘orthogonal shear’ 7,, of the
elements at B and D on the other hand cannot be reduced by the introduction
of residual shear stress (7,5 ),. Hence it is the ‘orthogonal shear’ at B and D
which governs the shakedown limit and the repeated plastic deformation which
occurs when the shakedown limit is exceeded.

Two additional effects contribute to apparent shakedown of surfaces in
rolling contact. The first, mentioned above, is the development of a groove with
three-dimensional bodies which increases the contact area and reduces the
contact pressure. Thus the true shakedown limit for a circular contact is some-
what greater than that given by (9.10). This process has been studied by Eldridge
& Tabor (1955) for high loads when a deep groove is formed. With repeated
rolling the depth and width of the groove reached steady values, from which
it was concluded that subsequent deformation was entirely elastic. The stabili-

+ It can be shown that a self-equilibrating system of residual stresses can be found
such that all points in the half-space do not exceed the elastic limit.
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sation of the groove dimensions does not guarantee a true shakedown state,
however, since plastic shear parallel to the surface (orthogonal shear) may still
be taking place.

The second effect which leads to apparent shakedown is a strain hardening.
With repeated deformation the value of k may rise, such that a load which
initially exceeds the shakedown limit subsequently lies within it. The theory is
derived for ideally plastic solids and some difficulty arises in applying it to
materials which strain-harden. Ponter (1976) has extended the theory to cover
an idealised material which yields initially at £ = k', but is capable of kinematic
hardening’ up to an ‘ultimate’ value of k = k" (k" > k').f For shakedown
Melan’s theorem must be satisfied with k = k”. At the same time yield must
be avoided, with k = k', by the loading stresses in combination with apparent
residual stresses which need not satisfy the equations of equilibrium. In the
two-dimensional case discussed above, the only possible system of residual
stresses, given by equation (9.4), automatically satisfies equilibrium, so that
the shakedown limit for a kinematically hardening material is still given by
equation (9.7) with k = k'. Shakedown of a three-dimensional contact has been
studied for a kinematically hardening material by Rydholm (1981) and for
a perfectly plastic material by Ponter et al. (1985).

(c) Repeated rolling - cumulative deformation

When the load exceeds the shakedown limit, from the previous discus-
sion we should expect orthogonal plastic shear to occur in the subsurface elements
B and D (Fig. 9.1). The elastic stresses and strains at B and D are equal and
opposite, but experiments by Crook (1957) and Hamilton (1963) have shown
that in free rolling a net increment of permanent shear takes place in the sense
of the outtlowing element at D. In repeated rolling cycles the plastic deforma-
tion accumulates so that the surface 1ayérs are displaced ‘forward’, i.e. in the
direction of flow, relative to the deeper layers (see Fig. 9.11(a)).

An approximate analysis of the elastic-plastic behaviour has been made
(Merwin & Johnson, 1963) by using the Reuss stress-strain relations in con-
junction with the elastic distribution of strain. In this way the stress components
in an element at any depth may be computed as it flows through the strained
region. By this technique the condition of compatibility of strains and the
stress-strain relations are satisfied exactly but the equilibrium of stresses is only
satisfied approximately. However, equilibrium of the residual stresses, expressed
by equations (9.4), is maintained. The assumption that the strain field, including

1 This idealisation of material behaviour implies that the initial vield locus of
‘radius’ &’ is free to translate in stress space provided that it remains inscribed
within a fixed yield locus of ‘radius’ k"
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plastic deformation, is the same as that without it, is likely to be a reasonable
one while the plastic zone is fully contained beneath the surface and therefore
is constrained by the surrounding elastic material. This will be the case provided
that the load is not greatly in excess of the shakedown limit.

Starting with a stress-free body a number of cycles of load must be followed.
The residual stresses build up very quickly and a steady state is virtually reached
after four or five cycles.

The complete numerical analysis follows the variation in all the com-
ponents of stress at each depth. However, the important components of stress
and strain are 7,, and vy, , and the mechanism of cumulative plastic deformation
can be. appreciated from a simple model which considers these components only.
The steady-state stress-strain cycle is illustrated in Fig'.b 9.5. An element approach-

Fig. 9.5. Cumulative plastic shear in rolling contact: simplified ortho-
gonal shear stress-strain cycle experienced by an element at depth
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ing the loaded region deforms elastically from 4 to B, at which point the yield
stress is reached (7, = +k). The element then deforms plastically at constant
stress while the strain continues to increase to a maximum v,, = vX at B,.

From B,, through C to Dy, the element unloads elastically and is deformed in

the opposite (—ve) sense until the yield point (r,, = —k) is reached at D;.
Reversed plastic deformation now takes place until the maximum negative

strain, v, = —v%,, is reached at D, . The element then unloads until it is stress-
free at E. It is not strain-free, however, since it has acquired an increment of
negative residual strain (v, );. The forward displacement of the surface in one
loading cycle is obtained by integrating (y,, ), through the depth of the plastically
deformed layer. Such calculations using the complete numerical analysis are com-
pared with experimental measurements in Fig. 9.6.

The resistance to rolling can be calculated from computation of the total
plastic work per unit distance rolled as elements flow through the plastic zone.
On the first pass the plastic zone extends through a depth corresponding to that
in which the elastic stresses, could they be realised, would exceed the plastic
limit, In the steady state, continuous plastic deformation is restricted to
a narrower layer (see Fig. 9.7), The resistance to rolling is then much less than

Fig. 9.6. Cumulative plastic shear in rolling contact: Merwin & Johnson
theory (1963) compared with experiments: circle ~ Cu/Cu; triangle -
Cu/Al; square - Cu/steel.
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Fig. 9.7. Residual stresses induced in free rolling contact of Duralumin
rollers. Circumferential stress (0, );: solid line - calculated; plus signs
joined by dashes - measured. Axial stress (0y);: broken line - calculated;
chain line - measured.
(0),/.170
-0.3 -0.2 -0.1 0

z/a

Plastic layer in steady state

Plastic deformation in 1st loading
Depth

in the first pass, although it is still much larger than would normally be expected
from elastic hysteresis (see Fig. 9.13).

Finally the analysis predicts the residual stresses (o), and (o), which are
introduced by plastic deformation. The calculated variation with depth for
po = 4.8k is shown in Fig. 9.7. Measurements by Pomeroy & Johnson (1969)
of the circumferential and axial components of residual stress in an aluminium
alloy disc due to free rolling contact.are also plotted in Fig. 9.7. In their main
features the agreement between theory and experiment is satisfactory; both
components of stress are compressive; they arise in the layer in which the
elastically calculated stresses exceed the elastic limit; the maximum values
coincide roughly with the depth at which 7,, is a maximum. The values of
the measured stresses are appreciably lower than calculated. This discrepancy
is likely to be due largely to the lack of plane-strain conditions in the experiment.

93 Rolling of a rigid cylinder on a perfectly plastic half-space
At high loads the plastic zone beneath a roller spreads to the free surface
so that large plastic strains are possible. In these circumstances the stresses may
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be analysed by neglecting the elastic strains and making use of the theory of
rigid-perfectly-plastic solids. In general the roller supports a normal load P,

a tangential force Q and a moment M; applied to the centre of the roller,
shown in the positive sense in Fig. 9.8. A driving wheel has M positive and
Q negative whereas a braked wheel has M; negative and Q positive; in free
rolling Q = 0. The mode of plastic deformation depends upon the magnitude
and sign of the applied forces.

We shall consider first the case of Q positive, and assume that friction is
sufficient to prevent slip at the interface. Incompressibility of the material and
plane deformation require that, in the steady state, the level of the surface is
unchanged by the roller. An approximate slip-line field and hodograph proposed
by Mandel (1967) for this case are shown in Fig. 9.9(z). The cap of material
ODC adheres to the roller and rotates with it about an instantaneous centre
I fixed to the half-space. A velocity discontinuity follows the slip line ABCO.
It is clear from the hodograph that the velocity of the free surface at D is some-
what greater than at 4 so that the actual surface AD must be slightly concave
and in consequence the slip lines DB and DC cannot be perfectly straight as
shown. However the errors will not be large provided that the ratio of contact
size to roller radius @/R is not too large.

The geometry of the field is specified by the two independent parameters:
(a/R) and the angle a. The pressure on DC is then given by

Ppc=k(1 +7/2+ 20— 2y) (9.12)
and that on OC by
Poc=k(1 +n/2+20—2¢) (9.13)

By integrating the stresses along DC and CO the forces P and Q and the moment

Fig. 9.8. Rolling contact of a rigid cylinder on a rigid perfectly-plastic
half-space.
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Fig. 9.9. Slip-line fields for a rigid cylinder rolling on a rigid-perfectly-
plastic half-space (Mandel, 1967). (¢) Mode I, (») Mode II, Mode III.

(a)

)

Detail at £

(c)
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Mg can be found. Mandel simplifies his analysis still further for small values of
a/R by assuming that the deformed surface ADO remains flat whereupon the
angle Y = 0. The solution is then a function of the single independent variable

a only. This approximation is reasonable when [ is located close to O and « is
large, which is the case in the vicinity of free rolling. Under conditions of severe
braking, on the other hand, the angle o becomes small and  is no longer small
in comparison. In the limiting case of a locked wheel which slides without
rotating, I moves to an infinite distance beneath the surface, & - 0, and ¢ > /4.
The limiting slip-line field comprises a small wedge of material which shears along
the line AO. This is the same situation as that of a sliding wedge discussed in
87.6(b) and shown in Fig. 7.19(b). In this limit

P=Q=k(a+a?/2R) {9.14)
Taking moments about O
Mo =Mg+ QR =1ka®>(1 +a/R + a*/4R*) =L P?/k (9.15)

The values of P, Q and M, have been calculated for a range of values of
« using the geometry of the field shown in Fig. 9.9(2) together with the
equations (9.12) and (9.13). The results are plotted in non-dimensional form
as Mpk/P? against the ratio Q/P and give the curve on the right-hand side of
Fig. 9.10. The relationship has been computed for a value of a/R = 0.2, but
this curve is almost independent of the value a/R, provided that a/R is not too
large.

The pattern of plastic deformation is determined by the hodograph. To a first
approximation surface points in the deforming region have a horizontal velocity
from right to left relative to the body of the solid given by ih — wp. The
forward velocity of the roller centre V' = w(R + p), so that the time of passage
of a surface point through the deforming region from 4 to O is given by

T=AH/V~(Q2)r+a)w(R + p)

where r = DC and p =10 as shown in Fig. 9.9(a). The plastic displacement of
this surface A is thus given by A = —wpT, i.e.
A__p@tv)

R RR e (9.16)

The surface of the half-space is displaced permanently backwards by the rolling
action. This is in contrast with the behaviour at lighter loads, described in the
previous section, where the action of the surrounding elastic material causes
the surface to be displaced fowards. (See Fig. 9.11).

Two special cases call for comment.

(i) The condition of free rolling is specified by Q/P = 0 (a = 73.5°), whereupon

Mo = Mg = 0.104P2/k (9.17)
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(i) The situation of a wheel driven forward by a horizontal force through
a frictionless bearing at G (i.e. Mz = 0) is specified by M, = QR and is located
therefore in Fig. 9.10 by the intersection of the curve by a straight line of
gradient Rk/P. The resistance to rolling in this case is slightly greater than in
free rolling.

An exact analysis of the deformation in Mode I shown in Fig. 9.9(2) has been
made by Collins (1978), in which the free surface AD takes in correct concave
profile and the slip lines DC and DB are appropriately curved. The exact results
are shown by the broken lines in Fig. 9.10. They depend upon M as well as
upon @, but the difference from Mandel’s approximate theory is not large. It
has been pointed out by Petryk (1983) that even Collins’ exact solutions are not
unique, but the possible range of variation is not large except at high loads when
the limit of complete shear (Q/P = 1) is approached.

As T approaches O and the angle a increases, the material to the right of CO
becomes overstressed and deforms plastically. The new mode of deformation has
not been found with certainty. Mandel proposes the mode shown in Fig. 9.9(b)
with a velocity discontinuity along the line DCE and a stress discontinuity at
E. The cap DCF adheres to the roller and rotates with it about an instantaneous
centre / which now lies above O. The pressure along CE is given by:

pce =k{1+ 20— 26 — sin (a« — 7/4)} (9.18)

and the angle 8 is determined by equating the values of the pressure at C given

Fig. 9.10. Rolling moments and forces given by the slip-line fields of

Fig. 9.9.
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Fig. 9.11. Plastic deformation in rolling contact: (¢) moderate loads —
cumulative forward displacement (see §9.2(c)); (b) heavy loads -
backward displacement in one pass (see eq. (9.16)).
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by equations (9.12) and (9.18). Mandel estimates that the change from the first
to the second mode of deformation takes place at Q/P = —0.09. The change is
accompanied by a large increase in contact area and a change in sign of the
permanent displacement of the surface which is now given by

A a(pcosa—rifa)

R R(R—p cosc) (919

However the moment My decreases in a continuous manner between the two
modes as shown in Fig. 9.10.

With an increase in driving moment on the cylinder the mode of deformation
changes again, when « < 7/4, to a single velocity discontinuity along the arc
DE as shown in Fig. 9.9(c). A vanishingly small fan of angle (7/4 — «) is located
with its apex at £, whereupon the pressure on the slip line DF is

ppe = k(1 +m/2—26) (9.20)

Integrating the stresses along this slip line completes the variation in M, with
Q/P shown in Fig. 9.10. Complete shear, which corresponds to the spinning of
a driving wheel, occurs when a —> 0, i.e. when Q/P —> —1/(1 + #/2).

The analysis outlined above assumes complete sticking along the arc of
contact. In each mode of deformation the contact pressure is least at the trailing
edge of contact, so slip would be expected to initiate there. A modification to
the first mode of deformation, which includes micro-slip at the rear of the arc
of contact, has been given by Mandel (1967), and also by Segal (1971). The
effect is to reduce the values of M in Fig. 9.10 slightly and to restrict the
limiting value of Q/P. A complete analysis for the case of zero interfacial
friction has been presented by Marshall (1968). In this case M must be zero
and Marshall finds that

Pk
Mop=0R=

202+ 1) {1 * 6(2 + mkR } (021)

Taking a typical value of P/kR = 1.0, equation (9.21) gives My /P*k = 0.100.
Drawing a line of slope 1.0 on Fig. 9.10 gives a value of M, /P*k = 0.125, so
that complete adhesion increases the resistance to rolling by 25% above the
frictionless value.

Rolling resistance measurements by Mandel with a steel cylinder rolling on
a lead surface are included in Fig. 9.10. The value of k for the lead has been
chosen to fit the experiments to the theory at the free rolling point (Q = 0),
but the theoretical variation in M, with Q/P at constant load is well supported
by the observations. They confirm that there is no discontinuity in My, in
changing from driving to braking. Absolute measurements of rolling resistance
and surface displacements by Johnson & White (1974) with steel rolling on
copper for the special cases of 0 = 0 and M = O gave the results shown in
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Table 9.1
0=0 Mg=0
P/kR Mg/RP A/R Q/P A/R
0.73 Theory 0.076 —0.013 0.085 —0.030
Experiment 0.047 —0.007 0.053 —0.012
1.05 Theory 0.110 —0.017 0.130 —0.042
Experiment 0.078 —0.016 0.085 —0.032

Table 9.1. The general trend of the measurements follows the results of Mandel’s
theory but the observed magnitude of both the rolling resistance and the surface
displacements is less than predicted. The discrepancies are almost certainly due
to the influence of elastic deformation, and they emphasise that a rigid-perfectly-
plastic analysis sets an upper limit on the rolling resistance and the amount of
permanent deformation,

9.4 Rolling contact of viscoelastic bodies

When the stress in the material of a body in rolling contact is influenced
by the rate of strain, the contact stresses and deformation will depend upon the
speed of rolling. The simplest time-dependent constitutive relations for a material
are those described as linear viscoelastic. They have been discussed in §6.5 in
relation to normal contact. Even so, the application of the linear theory of visco-
elasticity to rolling is not simple, since the situation is not one in which the
viscoelastic solution can be obtained directly from the elastic solution. The
reason for the difficulty is easy to appreciate. During rolling the material lying
in the front half of the contact is being compressed, whilst that at the rear is
being relaxed. With a perfectly elastic material the deformation is reversible so
that both the contact area and the stresses are symmetrical about the centre-line.
A viscoelastic material, on the other hand, relaxes more slowly than it is com-
pressed so that the two bodies separate at a point closer to the centre-line than
the point where they first make contact. Thus, in Fig, 9.12, 5 < a and recovery
of the surface continues after contact has ceased. The geometry of the rolling
contact problem in viscoelasticity is different, therefore, from that in the perfectly
elastic case so that the viscoelastic solution cannot be obtained directly from the
elastic solution. Furthermore the point of separation (x = 4) cannot be pre-
scribed; it has to be located subsequently as the point where the contact pressure
falls to zero.
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In view of these difficulties we shall present a one-dimensional treatment in
which a viscoelastic solid is modelled by a simple viscoelastic foundation of
parallel compressive elements which do not interact with each other (May et al.,
1959). We shall consider the contact of a rigid frictionless cylinder of radius
R rolling on such a foundation, as shown in Fig. 9.12.

The rolling velocity is ¥ and the cylinder makes first contact with the solid at
x = —a. Since there is no shear interaction between the elements of the founda-
tion, the surface does not depress ahead of the roller. To the usual approximation,
for a € R, the strain (compressive) in an element of the foundation at x is given by

€=—(6 —x*2R)/h, —a<x<bh (9.22)
where § is the maximum depth of penetration of the roller.

If the foundation were perfectly elastic with modulus K, the contact would be
symmetrical (b = @) and the stress in each element o would be Ke. The pressure
distribution under the roller and the total load would then be given by equations
(4.58) and (4.59). For a viscoelastic material the elastic modulus X is replaced
by a relaxation function ¥(#) as explained in §6.5. Thus by equation (6.51)
the stress in the viscoelastic element at x is given by

p(x,t)=—0=—ft\lf(t ) L) dr’ (9.23)
0

In steady rolling 8/t = V3/0x, thus, from equation (9.22) for the strain,
de/dt = Vx/Rh
Substituting in (9.23) and changing the variable from # to x, we get

1 * 2 _ r ’
px)= —-E};J_xx Y(x —x )dx (9.24)

Fig. 9.12. Rolling of a rigid cylinder on a viscoelastic foundation.
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To proceed further we must specify the relaxation function for the material.
Two simple examples incorporating delayed elasticity and steady creep were
discussed in §6.5 (see Fig. 6.20). We shall make use of the first of these simple
models, whose relaxation function is given by equation (6.54), and shall write

V() = K(1 + e 4/7) (9.25)
This material has an initial dynamic elastic response with modulus K(1 + ),
but under static (relaxed) conditions the modulus is K and T the relaxation
time. Substituting this relaxation function into equation (9.24), changing the

variable from ¢ to x and performing the integration give an expression for the
pressure distribution:

_K(Z2 1 2/,2 +
p() = —— [B(1—x*/a®) = B(1 + x/a)

+B(1+ ) {1 —em X/ (9.26)
where { = VT/a, which represents the ratio of the relaxation time of the
material to the time taken for an element to travel through the semi-contact-
width a. It is sometimes referred to as the ‘Deborah Number’.

The pressure is zero at x = —g and falls to zero again where x = b; this latter
condition determines the value of b/a as a function of § and ¢.
The normal load is found from
3

b Ka

r=[ pey="2 R (9.27)
—a Rh

and, since the pressure is now asymmetrical, rolling is resisted by a moment

given by

b Ka*
M= )t = P60 9:28)
—a Rh
Thus the coefficient of rolling resistance may be expressed as:
a
ur =M/FR =% Fr(B,9) (9:29)

Computations have been carried out for a material in which 8 = 1.0; values of
b/a and pp are plotted as a function of ¢, (=V7T/a,) in Fig. 9.13, where aq is the
static semi-contact-width. This diagram displays the significant features of visco-
elastic rolling contact.

At slow rolling speeds, when the contact time is long compared with the
relaxation time of the material (o <€ 1), the pressure distribution (9.26) and load
(9.27) approximate to the results for a perfectly elastic material of modulus
K given in equations (4.58) and (4.59). The moment M approaches zero.
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At very high speeds (¢ > 1), the pressure distribution and load again approxi-
mate to the elastic results but this time with a ‘dynamic’ foundation modulus
K(1 + B). Relaxation effects are important only when the contact time is
roughly equal to the relaxation time of the material (¢ ~ 1). It is under these
conditions that the contact becomes appreciably asymmetric and the maximum
resisting moment arises. A similar analysis for a rigid sphere rolling on a visco-
elastic foundation has been made by Flom & Bueche (1959).

The above analysis has been presented for a rigid cylinder rolling on a visco-
elastic plane. As in elastic theory, it is equally valid to the same degree of
approximation if the cylinder is viscoelastic and the plane rigid. The analysis
again holds for two viscoelastic bodies if an equivalent relaxation function is
used for a series combination of material elements of each body. An appropriate
value for the ratio K/k of the foundation can be obtained by comparing the
static deformation with Hertz as discussed in §4.3.

Fig. 9.13. Rolling of a rigid cylinder on a viscoelastic half-space (8§ = 1).
Solid line - full solution, Hunter (1961). Large-dashed line - viscoelastic
foundation model, eqs (9.26)~(9.29). Small-dashed line - loss tangent,
eq. (9.36). (a) Contact dimensions; (b) rolling resistance.
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A full solution for the rolling contact of a rigid cylinder on a viscoelastic
half-space has been presented by Hunter (1961) for materials having a single
relaxation time. A different method, which is capable of handling two visco-
elastic bodies having general relaxation functions, has been developed by
Morland (1967a & &) but considerable computing effort is necessary to obtain
numerical results.

For a rigid cylinder rolling on a simple material whose relaxation function is
given by (9.25) Hunter’s and Morland’s solutions are identical. Results for
a material whose Poisson’s ratio v is constant and § = 1 are plotted in Fig. 9.13,
where they are compared with the one-dimensional foundation model. The
qualitative behaviour of the simple model is similar to that given by the fufl
analysis; the contact is most asymmetrical and the rolling resistance is a maxi-
mum at a Deborah Number of about unity. The rolling moment peak is lower
for the model since energy dissipated in shear between the elements is ignored
and the peak occurs at a somewhat lower value of VT/a, since the length of the
deforming zone in the model is less than that in the half-space.

Materials having more than one relaxation time would exhibit a rolling resis-
tance peak whenever the time of passage' through the contact coincided with
one of the relaxation times.

9.5 Rolling friction

1deally rolling contact should offer no resistance to motian, but in
reality energy is dissipated in various ways which give rise to ‘rolling friction’.
Much of the analysis discussed in this chapter and the previous one has been
the outcome of attempts to elucidate the precise mechanism of rolling resistance,
so that it would seem appropriate to conclude this chapter with a summary of
our present understanding. The various sources of energy dissipation in rolling
may be classified into (@) those which arise through micro-slip and friction at
the contact interface, (b) those which are due to inelastic properties of the
material and (c) those due to roughness of the rolling surfaces. We shall consider
each in turn. '

‘Free rolling’ has been defined as motion in the absence of a resultant tangen-
tial force. Resistance to rolling is then manifest by a couple M,, which is
demanded by asymmetry of the pressure distribution: higher pressures on the
front half of the contact than the rear. The trailing wheels of a vehicle, however,
rotate in bearings assumed frictionless and rolling resistance is overcome by
a tangential force Q, applied at the bearing and resisted at the contact interface.
Provided that the rolling resistance is small (Q, < P) these two situations are the
same within the usual approximations of small strain contact stress theory, i.e.
to first order in (a/R). It is then convenient to write the rolling resistance as
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a non-dimensional coefficient ug expressed in terms of the rate of energy
dissipation W, thus

“RE_ = — = — (930)
The quantity W/ V is the energy dissipated per unit distance rolled.

(a) Micro-slip at the interface
Micro-slip has been shown to occur at the interface when the rolling
bodies have dissimilar elastic constants ( (§8 2). The resistance from this cause
dMs upon the difference of the elastic constants expressed by the parameter
B (defined by eq. (5.3)) and the coefficient of slipping friction B The resistance
to rolling reaches a maximum value of

M 15 x 107*8(a/R 3
#R—}E X B(a/R) (9.31)

when 8/u =~ 5. Since, for typical combinations of materials, 8 rarely exceeds
0.2, the rolling resistance from this cause is extremely small.

It has frequently been suggested that micro-slip will also arise if the curvatures
of two bodies are different. It is easy to see that the difference in strain between
two such surfaces will be second-order in (2/R) and hence negligible in any small
strain analysis. A special case arises, however, when a ball rolls in a closely con-
forming groove. The maximum rolling resistance is given by (see §8.5)

M
b = 52 = 0.08u(a/R)?(b/a (9.32)

The shape of the contact ellipse (b/a) is a function of the conformity of the ball
and the groove; where the conformity is close, as in a deep groove ball-bearing,
b > a and the rolling resistance from this cause becomes significant.

In tractive rolling, when large forces and moments are transmitted between
the bodies, it is not meaningful to express rolling resistance as Q,. or M, /R.
Nevertheless energy is still dissipated in micro-slip and, for comparison with
free rolling, it is useful to define the effective rolling resistance coefficient
HR = W/ VP, This gives a measure of the loss of efficiency of a tractive drive
such as a belt, driving wheel or variable speed gear. In the case of the belt drive
(88.1) for example, a moment M is transmitted between the two shafts but the
driven shaft runs slightly slower than the driver, the difference between input
and output power being accounted for by the energy dissipated in micro-slip
given by

. A
W/V=M(1—2— —R—)/V=M£/R (9.33)

1 2
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where £ is the creep ratio. This approach applies also to the tractive rolling of
other elastic bodies. For rolling cylinders transmitting a tangential force Q,
the creep is given by equation (8.26) whence

=1 *'lf% (1 — 1/2 ‘_1

pR =W/VP = 7 {1—=(1—Q/uP) }R
{~ 3(0x/P)(@/R) for (0./P)<u (9.34a)
= u*(a/R) for  (Qx/P) =) (9.34D)

on the point of gross sliding. Similar expressions for the effective rolling resis-
tance of spherical bodies transmitting tangential forces QO or Q,, can be
obtained from the creep equations (8.45) and (8.46). If the tractive force is
small compared with the limiting friction force it is clear from (9.34¢) that the
energy loss is small, but as sliding is approached the loss may become important
if the coefficient of friction is high.

Finally micro-slip is introduced by spin. The angular velocity of spin w, is
resisted by a spin moment M, given by equation (8.43) provided w, is small.
At large spins the moment rises to a maximum value 3mpPa/16 for a circular
contact area, whereupon

3nu (w,R\ a
(MR )max = M0, /VP = i (_V—) 2

which accounts for a serious loss of efficiency of rolling contact variable speed
drives.

(9.35)

(b) Inelastic deformation of the material
Except in the special cases mentioned above resistance to free rolling
is dominated by inelastic deformation of one or both bodies. In this case the
energy is dissipated within the solids, at a depth corresponding to the maximum
shear component of the contact stresses, rather than at the interface, With
materials having poor thermal conductivity the release of energy beneath the
surface can lead to high internal temperatures and failure by thermal stress
(Wannop & Archard, 1973). S
The behaviour of metals is generally different from that of non-metals. The
inelastic properties of metals (and hard crystalline non-metallic solids) are
governed by the movement of dislocations which, at normal temperatures, is
not appreciably influenced either by temperature or by rate of deformation.
Lower density solids such as rubber or polymers tend to deform in a visco-
elastic manner which is very sensitive to temperature and rate of deformation.
The rolling friction characteristics of a material which has an elastic range of
stress followed by rate-independent plastic flow above a sharply defined yield
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stress, typical of hard metals, are shown in Fig. 9.14. Non-dimensional rolling
resistance (Gug /k) is plotted against non-dimensional load (GP/kR) for the
contact of a rigid cylinder on a deformable solid, where G is the shear modulus
and k the yield stress in shear of the solid. At low loads the deformation is
predominantly elastic and the rolling resistance is given by the elastic hysteresis
equation (9.2). The hysteresis loss factor «, found by experiment, is generally
of the order of a few per cent.

The elastic limit is reached in the first traversal at a load given by equations
(6.5) and (6.7) but, after repeated traversals, continuous plastic deformation
takes place only if the load exceeds the shakedown limit given by equation (9.9).
The resistance due to contained plastic deformation has been calculated by
Merwin & Johnson (1963) for loads which do not greatly exceed the shakedown
limit. At high loads, when the plastic zone is no longer contained, i.e. the condi-
tion of full plasticity is reached, the rolling resistance may be estimated by the
rigid-plastic theory of Mandel. The onset of full plasticity cannot be precisely
defined but, from our knowledge of the static indentation behaviour where
full plasticity is reached when P/22 ~ 2.6 and Ea/YR =~ 100, it follows that
GP/k*R =~ 300. Extrapolating the elastic-plastic results completes the picture.

Fig. 9.14. Rolling resistance of a rigid cylinder on an elastic-plastic solid.
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Experiments by Hamilton (1963) suggest that the elastic-plastic theory, which
neglects losses in the elastically deformed material, under-estimates the rolling
resistance, whilst experiments by Johnson & White (1974) suggest that the rigid-
plastic theory, which neglects elastic deformation, overestimates the resistance.
Nevertheless the general agreement is satisfactory and the figure shows that

a steep rise in rolling resistance is to be expected when a continuously deforming
plastic zone develops beneath the surface.

The characteristics of viscoelastic materials are somewhat different. In the
previous section we saw how the rolling resistance of a simple linear viscoelastic
solid could be analysed. Unfortunately most real viscoelastic materials are
nonlinear and, further, their relaxation behaviour cannot usually be expressed
in terms of a single relaxation time such as in the models shown in Fig. 6.20.
However a useful empirical approach is possible using expressions (9.2) and
(9.3) for rolling resistance in terms of an elastic hysteresis factor a. The most
common method of measuring the hysteresis properties of viscoelastic materials
is to measure the dissipation in cyclic strain as a function of frequency. The
results of such measurements are usually expressed as a loss tangent tan &,
where & is the phase angle between stress and strain. To correlate values of
tan & with rolling resistance we compare the hysteresis theory with the full
analysis given in §4 for the simple material whose relaxation function is given
by (9.25). For such a material the loss tangent is given by

tan 8(w) = BwT/{1 + (1 + B)w?T?} (9.36)
where T is the relaxation time of the material. This relationship for = 1 is
compared with the variation of rolling resistance with Deborah Number
$o (= VT/ay) in Fig. 9.13(b). The curves are similar in shape. Their peaks can
be made to coincide if w7 is put equal to 1.83¢, i.e. the period of cyclic strain
is put approximately equal to the time of passage of a material element through
the contact zone. Their peak values agree if the value of « in equation (9.2) is
taken to be about 2.6 tan §. In this way the rolling resistance for viscoelastic
materials may be estimated from measurements of the loss tangent in cyclic
strain, provided that the shear stress level at which the measurements are made
is roughly comparable with that in rolling contact.

The variation of hysteresis loss with temperature in viscoelastic materials
has been found to be related to the variation with frequency such that a unique
curve is obtained when tan § is plotted against e, where a is the Williams,
Landen & Ferry shift factor defined by (see Ward, 1971)

Inap = M (9.37)

C,+(0—86y)

=04+ 50, where 8, is the glass transition temperature and C; and C, are
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constants for the polymer. By the use of (9.37) the variation of hysteresis loss
with temperature can be deduced from the variation with frequency. Measure-
ments by Ludema & Tabor (1966) of the variation of rolling friction with
temperature at a constant speed were found to follow the variation of hysteresis
loss with temperature at a constant frequency.

(c) Surface roughness

It is an everyday experience that resistance to rolling of a wheel is
greater on a rough surface than on a smooth one, but this aspect of the subject
has received little analytical attention, The surface irregularities influence the
rolling friction in two ways. Firstly they intensify the real contact pressure so
that some local plastic deformation will occur even if the bulk stress level is
within the elastic limit. If the mating surface is hard and smooth the
asperities will be deformed plastically on the first traversal but their defor-
mation will become progressively more elastic with repeated traversals. A decreas-
ing rolling resistance with repeated rolling contact has been observed experimen-

tgll—_—i by Halling (1959). The second way in which roughness influences resistance
is through the energy expended in surmounting the irregularities, It is significant
with hard rough surfaces at light loads. The centre of mass of the roller moves up
and down in its forward motion which is therefore unsteady. Measurements of
the resistance force by Drutowski (1959) showed very large, high frequency
fluctuations: energy is dissipated in the rapid succession of small impacts
between the surface irregularities. It is the equivalent on a small scale of a wagon
wheel rolling on a cobbled street, Because the dissipation is by impact the
resistance from this cause increases with the rolling speed.
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10.1 An elastic strip between rollers

Many processes involve the passage of a strip or sheet of material
through the nip between rollers. In this section we consider the strip to be
perfectly elastic and investigate the stresses in the strip, the length of the arc
of contact with the roller, the maximum indentation of the strip and the precise
speed at which it feeds through the nip in relation to the surface speed of the
rollers. If the strip is wide and the rollers are long in the axial direction it is
reasonable to assume plane deformation.

The static indentation of a strip by rigid frictionless cylinders was considered
briefly in §5.8. The stresses in an elastic strip due to symmetrical bands of
pressure acting on opposite faces have been expressed by Sneddon (1951) in
terms of Fourier integral transforms. The form of these integrals is particularly
awkward (e.g. eq. (5.65)) and most problems require elaborate numerical com-
putations for their solution. However, when the thickness of the strip 2b is
much less than the arc of contact 2z an elementary treatment is sometimes
possible. The situation is complicated further by friction between the strip and
the rollers. We can analyse the problem assuming () no friction (1 = 0) and
(b) complete adhesion (u = 2°), but our experience of rolling contact conditions
leads us to expect that the arc of contact will, in fact, comprise zones of both
‘stick’ and ‘slip’.

We will look first at a strip whose elastic modulus is of a similar magnitude
to that of the rollers, and write

(I—Vlz)/El 1+«
(A—v?)E, 1—a
where « is defined by equation (5.32) and 1, 2 refers to the strip and the rollers
respectively. If the strip is thick (b > &) it will deform like an elastic half-space

C

(i

(10.1)
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and the contact stresses will approach those discussed in §8.2. With equal
elastic constants the deformation will be Hertzian, for unequal elasticity friction
will introduce tangential tractions which, in the absence of slip, will be given
by equation (8.15).

At the other extreme, when b < a, the deformation is shown in Fig. 10.1.
The compression of the roller is now much greater than that of the strip so that
the pressure distribution again approximates to that of Hertz, viz.

2P
p(x) = —(~x*/a*)!' (10.2)
a

The strip is assumed to deform with plane sections remaining plane so that the
compression at the centre of the strip is given by

p b(1—v*)p(0)  2b(1 —v,?)P
B El 7T£1E1

If the deformed surfaces of the strip are now approximated by circular arcs
of radius R’, then

1 2d 4b(1—v 2P

—= _ 10.3
R & 7a’E, (10.3)
The rollers are flattened from a radius R to R’, so that by equation (4.43)
4P(1 —vy? 1 1
P )/(—~—,) (10.4)
nE, R R
Eliminating R’ from (10.3) and (10.4) gives
a\? b
—) =]1+C- (10.5)
dy a

Fig. 10.1. A thin elastic strip nipped between elastic rollers.
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where ag = {4PR(1 —v,*)/E,}!'? is the semi-contact-width for a vanishingly
thin strip.

With frictionless rollers the longitudinal stress in the strip o, is either zero
or equal to any external tension in the strip. Due to the reduction in thickness,
the strip extends longitudinally, whilst the roller surface compresses according
to the Hertz theory, so that in fact frictional tractions g(x) arise (acting inwards
on the strip) whether or not the materials of the strip and rollers are the same,
For equilibrium of an element of the strip

do, 1

d—x“‘—‘zq(x) (10.6)

Slip between the rollers and the strip is governed by equation (8.3). If there is
no slip equation (8.3) reduces to

Oily; Ollyy
ox 0x

where £ is the creep ratio (V; — V,)/V, of the strip relative to the periphery of
the rollers. The longitudinal strain in the strip is given by

=~ (10.7)

al_lxl ]. - V12
o0x E]_

and the surface strain in a roller within the contact arc is given by equation
(2.25a). For a thin strip we can take the pressure distribution p (x) to be
Hertzian given by (10.2). The expressions (10.8) and (2.25a) for the strains

in the strip and rollers respectively can then be substituted into equation (10.7)
which, together with (10.6), provides an integral equation for the tangential
traction g(x). This integral equation is satisfied by the traction:

q(x)=(1——45—)-b—p0 . — (10.9)

1+a/ 2a " (@>—x*)'?
where § is defined in equation (5.35). This expression for g(x) is satisfactory
away from the edges of the contact, but the infinite values at x = *a are

a consequence of assuming plane sections remain plane. The traction falls to
zero, in fact, at the edges.

{ox+ - p(x)} (10.8)

1_V1

A complete numerical analysis of this problem has been made by Bentall
& Johnson (1968) for a range of values of b/a; the results are shown in Fig.
10.2. The contact pressure is close to a Hertzian distribution for all values of
b/a. The frictional traction is zero at the extremes of both thick and thin strips;
it reaches a maximum when b/a =~ 0.25. Although g(x) falls to zero at x = *a,
in the absence of slip the ratio g(x)/p (x) reaches high values. This implies that
some micro-slip is likely at the edges of the contact.
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The pattern of micro-slip depends upon the relative elastic constants of the
strip and rollers, If the materials are the same, or if the rollers are more flexible
(B < 0) the tangential traction always acts inwards on the strip and a pattern of
three slip regions similar to that with two dissimilar rollers in contact (Fig.

8.2) is obtained whatever the thickness of the strip. The distribution of

traction and also the stress difference |0, — 0, | on the centre-plane of the

strip are shown in Fig. 10.3 for § = 0, b/a = 0.10 and p = 0.1. Slip occurs in
the same direction at entry and exit and a reversed slip region is located towards
the exit. Slip affects neither the contact width 2 nor the indentation depth d,
but the creep ratio is quite sensitive to the coefficient of friction (see Fig. 10.2).

When the strip is more flexible than the rollers (8 > 0) the frictional traction
acts outwards on thick strips and inwards on thin ones, so that the pattern of
slip depends upon the strip thickness, but is similar to that shown in Fig. 10.3
if the strip is thin.

In the above discussion we have taken for granted that the strips and rollers
have elastic constants which have a comparable magnitude, for example metal
strips nipped by metal rollers. A somewhat different picture emerges when the
rollers are relatively rigid compared with the strip, particularly if the strip is
incompressible, for example rubber sheet nipped between metal rollers. With
a sufficiently thick strip the contact stresses approach those for a'rigid cylinder
indenting an elastic half-space. A thin strip nipped between frictionless rollers
is similar to an elastic layer supported on a frictionless base indented by a friction-
less cylinder, which has been discussed in §5.8. But when friction between the
roller and the strip is taken into account simple solutions based on homogeneous
deformation are unsatisfactory.

Fig. 10.2. An elastic strip between elastic rollers: semi-contact-width a,
penetration d and creep ratio £. (C=1,8=0, vy =v, = 0.3).
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A complete numerical solution is presented in Fig. 10.4 for C'= 1000 and
vy = 0.5 assuming no slip. For an incompressible material in contact with
a relatively rigid one § = 0, so that the half-space solution, which is the limit
for b > a, does not involve any frictional traction and the stresses and deforma-
tion are given by Hertz. Thinner strips tend to be squeezed out longitudinally
and inward acting tangential tractions arise. The ratio of g(x)/p(x), shown in
Fig. 10.4(b), indicates the magnitude of the coefficient of friction which is
necessary to prevent slip at the edges of the contact. For b = 0.25a the pressure
distribution shown in Fig. 10.4(a) is approximately parabolic, as suggested by
equation (5.71). For b ~ 0.1a the pressure distribution for an incompressible
material becomes bell-shaped, roughly as given by equation (5.75). Further

Fig. 10.3. An elastic strip between rollers (C =1,=0,v; = v,=0.3).
(a) Distributions of pressure p(x) and tangential traction g(x). (b) Stress
difference oy — 051
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Fig. 10.5. An incompressible elastic strip between relatively rigid rollers
(C=1000,8=0,v,=0.5,v,=0.3). Semi-contact-width a, penetration
d and creep ratio £. Solid line - no slip (u = =); broken line - frictionless
(u=0).
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reduction in thickness of the strip results in deformation of the rollers becoming
significant. In the limit when b is vanishingly small, the deformation is confined
to the rollers, the stresses are again given by Hertz for the contact of two equal
cylinders, so that the frictional traction also vanishes in this limit. The variations
of contact width, penetration and creep ratio with strip thicknesses are plotted
in Fig. 10.5.

10.2 Onset of plastic flow in a thin strip

In the metal industries thin sheet is produced from thick billets by
plastic deformation in a rolling mill. We shall consider this process further in
§3 but first we must investigate the conditions necessary to initiate plastic flow
in a strip nipped between rollers. A thick billet is similar to a half-space so that
the initial yield occurs (by the Tresca criterion) when the maximum elastic
contact pressure pg reaches 1.67Y (eq. (6.4)), where Y is the yield stress of the
billet in compression. A thin strip between rollers, as shown in Fig. 10.1, will
yield when

l0x = 0z lmax = YT (1010)

With frictionless rollers o, is approximately zero and g, = —p, so that yield in
this case occurs when py = Y, which is lower than for a thick billet. However it

T This criterion assumes that oy, is the intermediate principal stress. With very thin
strips that is no longer the case so that yield, in fact, initiates by lateral spread.
However plane strain conditions restrict such plastic deformation to a negligible
amount.
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is a fact of experience that very high contact pressures are necessary to cause
plastic flow in a thin strip. The frictional traction acts inwards towards the mid-
point of the contact (see eq. (10.9) for a strip which sticks to the rollers) and
results in a compressive longitudinal stress o,, which inhibits yield.

Detailed calculations of the stresses on the mid-plane of the strip have been
made by Johnson & Bentall (1969) for 1= 0, 0.1 and for no slip (¢ ~> =0).

A typical variation of |0, — 0,| through the nip is shown in Fig. 10.3(?). The
effect of friction on |o, — 0,|nax is very marked. By using the yield criterion
(10.10) the load to cause first yield P is found for varying thicknesses of strip
h and the results plotted non-dimensionally in Fig. 10.6. The influence of
friction in producing a rise in the load to cause yield in thin strips is most
striking,

The initiation of yield does not necessarily lead to measurable plastic defor-
mation. If the plastic zone is fully contained by elastic material the plastic
strains are restricted to an elastic order of magnitude. The point of initial
yield (point of |0, — 0,lmax ) in the strip lies towards the rear of the nip in
the middle slip zone marked L in Fig. 10.3. In this slip zone the strip is moving
faster than the rollers. If there is to be any appreciable permanent reduction in
thickness of the strip it must also emerge from the nip moving faster than the
rollers. For this to happen the second stick zone and the final reversed slip zone
of the elastic solution (Fig. 10.3()) must be swept away. The middle slip zone,

Fig. 10.6. Load to cause first yield Py and the load to cause uncontained
plastic reduction Pg in the rolling of strip of thickness A.
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in which plastic reduction is taking place, will then extend to the exit of the
nip. The distribution of traction and the corresponding variation in |o,, — 0,
compatible with a single slip zone at exit have been calculated. |0, — 0, | ax
has equal maximum values at the beginning and end of the no-slip zone, so that
plastic flow begins at F"in Fig. 10.3. Putting |0y — 0y |max = Y in this case leads
to a value of the load Py at which uncontained plastic flow commences. The
variation of Pr with strip thickness (taking ¢ = 0.1) is included in Fig. 10.6.

It shows that the load to initiate measurable plastic reduction is almost double
that to cause first yield. The effect of friction in preventing the plastic flow of
very thin strips is again clearly demonstrated. The superimposition of an external
tension in the strip reduces the longitudinal compression introduced by friction
and makes yielding easier.

10.3 Plastic rolling of strip

When a metal strip is passed through a rolling mill to produce an appre-
ciable reduction in thickness, the plastic deformation is generally large compared
with the elastic deformation so that the material can be regarded as being rigid-
plastic. In the first instance the elastic deformation of the rolls may also be
neglected. For continuity of flow, the rolled strip emerges from the nip at
a velocity greater than it enters, which is in inverse proportion to its thickness
if no lateral spread occurs. Clearly the question of sticking and slipping between
the rolls and the strip, which has been prominent in previous chapters, arises in
the metal rolling process. In hot rolling the absence of lubricant and the lower
flow stress of the metal generally mean that the limiting frictional traction at the
interface exceeds the yield stress of the strip in shear so that there is no slip in
the conventional sense at the surface.

It is for the condition of no slip encountered in hot rolling that the most
complete analyses of the process have so far been made. We saw in the previous
section that interfacial friction inhibits plastic reduction, so that in cold rolling
the strip is deliberately lubricated during its passage through the rolls in order to
facilitate slip. At entry the strip is moving slower than the roll surfaces so that
it slips backwards; at exit the strip is moving faster so that it slips fowards. At
some point in the nip, referred to as the ‘neutral point’ the strip is moving with
the same velocity as the rolls. At this point the slip and the frictional traction
change direction. In reality, however, we should not expect this change to occur
at a point. In the last section, when a thin elastic strip between elastic rollers was
being examined, we saw that plastic deformation and slip would initiate at entry
and exit; in between there is a region of no slip and no plastic deformation. It
seems likely therefore that a small zone of no slip will continue to exist even
when appreciable plastic reduction is taking place in the nip as a whole. Current
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theories of cold rolling, which are restricted to the idea of a ‘neutral point’,
must be regarded as ‘complete slip’ solutions in the sense discussed in Chapters
8 and 9.

The complete solution of a problem involving the plane deformation of
a rigid-perfectly-plastic material calls for the construction of a slip-line field. So
far this has been achieved only for the condition of no slip, which applies to hot
rolling. Before looking at these solutions we shall examine the elementary theories,
with and without slip, which derive from von Kdrmén (1925).

The geometry of the roll bite, neglecting elastic deformation, is shown in
Fig. 10.7. The mean longitudinal (compressive) stress in the strip is denoted by
0, and the transverse stress at the surface by 0,. Equilibrium of the element gives

0,dx =(p cos ¢+ g sin p)R d¢ (10.11)
and

d(ho,) = (p sin ¢ —q cos ¢)2R d¢ (10.12)
In this simple treatment it is assumed that in the plastic zone 0, and o, are

Fig. 10.7
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related by the yield criterion
0, — 0, =2k (10.13)
This simplification implies a homogeneous state of stress in the element which

is clearly not true at the surface of the strip where the frictional traction acts.
Nevertheless by combining equations (10.11), (10.12) and (10.13) we obtain

d
a;{h(p+qtan¢—2k}}=2R(p sin ¢ —q cos ¢) (10.14)

which is von K4rman’s equation. It is perfectly straightforward to integrate this
equation numerically (see Alexander, 1972) to find the variation in contact
pressure p(¢) once the frictional conditions at the interface are specified. Before
electronic computers were available; however, various simplifications of

von Karmén’s equation were proposed to facilitate integration. For relatively
large rolls it is reasonable to put sin ¢ & ¢, cos ¢ = 1 etc. and to retain only first
order terms in ¢. The roll profile is then approximated by

h~hg+ R¢*~hg+ x2/R (10.15)

Making these approximations in (10.14), neglecting the term g tan ¢ compared
with p, and changing the position variable from ¢ to x give

R L (10.16)
o« R 4 '

In addition, it is consistent with neglecting second order terms in ¢ to replace
h by the mean thickness & (= (ko + h;)). To proceed, the frictional traction
g must be specified.

(a) Hot rolling - no slip
For hot rolling, it is assumed that g reaches the yield stress k of the
material in shear throughout the contact arc. Equation (10.16) then becomes

_dp x
—=2k (Z—i 1) (10.17)
dx R

The positive sign applies to the entry region where the strip is moving slower
than the rolls and the negative sign applies to the exit. Integration of (10.17),
taking 0, = O at entry and exit, gives the pressure distribution:

At entry

ﬁ(g_l):(l+x/a)—£(1——x2/a2) (10 18[1)
a\2k R ’
and at exit

hip ax?
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The pressure at the neutral point is common to both these equations, which
locates that point at

:z_%+z_R (10.19)
The total load per unit width is then found to be

P 1 (0 a( |4

;;=@Jﬂp@ﬁh%2+56—§i) (10.20)

and the moment applied to the rolls is found to be

M1 J‘ 0 L a
i) sz (1-7) (1021
This analysis is similar to the theory of hot rolling due to Sims (1954), except
for the factor n/4 which Sims introduces on the right-hand side of equation
(10.13) to allow for the non-homogeneity of stress. It is clear from the above
expressions for force and torque that the ‘aspect ratio’ &/ is the primary inde-
pendent variable: the parameter a/R, which is itself small in the range of validity
of this analysis (¢ small), exerts only a minor influence. Equations (10.20) and
(10.21) for force and torque are plotted as dotted lines in Fig. 10.10.

The approach outlined above, in which the yield condition (10.13) is applied
to the average stresses acting on the section of strip, makes equation (10.14)
for the contact forces statically determinate, but the actual distributions of stress
and deformation within the strip remain unknown. In reality the stresses within
the strip should follow a statically admissible slip-line field and the deformation
should follow a hodograph which is compatible with that field. To ensure such
compatibility is far from easy. It was first achieved by Alexander (1955) by using
a graphical trial-and-error method for a single configuration (4/a = 0.19,
a/R = 0.075) and by assuming that

—k<qg<+k

everywhere throughout the arc of contact. The slip-line field and hodograph
are shown in Fig. 10.8(b) and (c). In the centre of the roll bite there is a cap of
undeforming material attached to the roller over the arc CD. The tangential
traction |¢| < k in this arc. There is also a thin sliver of undeforming material
on the arc AB at entry, The material is deforming plastically in the zones
ABCNF and DEGN. A velocity discontinuity follows the slip lines AB, CN

and ND. There is ‘quasi-slip’ between the rolls and the strip on the areas BC
and DE which takes the form of a ‘boundary layer’ of intense shear at the yield
stress k. The state of stress in the strip is obtained by following the slip lines
from the entry at A or the exit at £, At the neutral point /V the stress is the
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same from whichever end it is approached. The pressure distribution over the
contact arc is shown by the full lines in Fig. 10.8 where it is compared with
the simple theory given by equations (10.18) (shown dotted).

Slip-line fields for other geometric configurations have since been constructed
by Crane & Alexander (1968) for thin strips and by Dewhurst ef al. (1973) for
thicker strips. It transpires that the form of the solution depends almost entirely
upon the aspect ratio /2/z and hardly at all upon the roll radius parameter a/R.

A sample of the different fields is shown in Fig. 10.9. Alexander’s original
solution (Fig. 10.8) applies to thin strips. At a value of /2/a ~ 0.29 the quasi-

Fig. 10.8. Hot rolling of strip (2/a = 0.19, ¢/R = 0.075). () Pressure
distribution: solid line - from the slip-line field, Alexander (1955);
broken line - from eq. (10.18); (») Slip-line field (Mode I: E/a< 0.29);
(¢) Hodograph. '
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slip region BC just vanishes and the velocity discontinuity which follows the slip
line AN now lies entirely within the material (Fig. 10.9(2)). A second critical
aspect ratio occurs at /2/a & 0.43, when the quasi-slip region DE just vanishes
and the rigid cap covers the whole arc of contact. The fields for greater values
of h/a have been found by Dewhurst ef al. (1973). The rigid cap AGE no longer
penetrates to the centre-line of the strip, but a velocity discontinuity follows
the slip lines AN and NE (Fig. 10.9()). At h/a = 0.72, the arc GE contracts to
a single point, whereupon the rigid zone takes the form shown in Fig. 10.9(c),
with a velocity discontinuity along its boundary AE.

In view of the insensitivity of the fields to roll radius (i.e. to a/R), the roll
force coefficient P/ka and torque coefficient M/ka® can be plotted as unique
curves against the aspect ratio //a, as shown in Fig. 10.10. A minimum in both
force and torque is obtained when the aspect ratio is about unity. With thin
strips friction at the roll surfaces inhibits yield through high hydrostatic pressure
in the centre of the roll bite; with thick strips, higher contact pressures are
required to cause plastic flow through the thickness of the strip. When a further
critical strip thickness is reached the roll pressure required to cause yield
through the strip is greater than that to cause plastic flow only in the surface
layers in the manner discussed in §9.3. By extending the slip-line field shown
in Fig. 9.9(a) into the solid this critical thickness is found to be ~8.8a.

Fig. 10.9. Slip-line fiel_ds for hot rolling. () Mode II: 0.29 < hja < 0.43;
(b) Mode III: 0.43 <h/a <0.72;(c) Mode IV: 0.72 <1fa < 8.8.
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We must now examine the assumption that friction at the roll face is
sufficient to prevent slip. In all cases the contact pressure is least at exit. In
Crane & Alexander’s solutions for thinner strips a coefficient of friction up to
0.7 is required to develop a traction of magnitude & in the zone DE (Fig.
10.8(b)).¥ In Dewhurst’s solutions for thicker strips there is a small range of
conditions, where G approaches E (Fig. 10.9(%)), which results in the roll
pressure at E' becoming negative. In practice some slip in the vicinity of £ will
remove this anomaly.

{b) Cold rolling - with slip
We turn now to the case of cold rolling, where the strip is taken to
slip relative to the rolls at all points in the arc of contact, so that in equation
(10.16) we write g = tup. Replacing 4 by the mean thickness / gives a linear
differential equation for the contact pressure:
d(p/2k)  2pa ( p ) 2a% X
dx  h \2k/ Rh

where X = x/a. The negative sign applies at entry and the positive sign at exit.

(10.22)

1 Denton & Crane (1972) have proposed a modified theory to allow for slip at exit.

Fig. 10.10. Variation of roll force P and roll torque M with aspect ratio
hfa. Solid line - from slip-line fields; broken line - egs. (10.20) and
(10.21); cross in circle — Alexander’s solution (Fig. 10.8).
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Integrating this equation, with p/2k = 1 at X = 0 and X = —1, gives the
pressure in the entry zone to be

pl2k = {1+ (y\) —7} T —yx —y/\ (10.23a)
and in the exit zone
pl2k =1+ y/\) e M + 4 X —y/\ (10.23b)

where A = (2ua/h) and v = (a/uR).
Equating the pressures given by (10.23z and b) yields the position of the
neutral point:

Y — -
xn/aEXn%—%-*-z—)\(l—e 7\/2) (1024)

Integrating the pressure over the arc of the contact gives an expression for the
roll force:

P 4(>\ 7)

ka

{exp (—NXp) — 1} + v+ (4vX,/A) — 29X,2  (10.25)

Similarly for the roll moment:

M 4()\+7)
— = X, exp( ?\X)+ (1—4X +4X,/N)
ka g

+2y(1+2X,%) — 2/A (10.26)

Provided that +y is not too large the values of roll force and roll moment given
by the closed form expressions (10.24), (10.25) and (10.26) are very close to
the numerical integration of von Kdrman’s equation (10.14) by Bland
& Ford (1948). Owing to the dominance of the exponential terms in (10.25)
and (10.26) it follows that the force and moment are governed predominantly
by the aspect ratio parameter A(= 2ua/h ) while the influence of y(= a/uR) is
relatively small. The reduction in thickness of the strip through the rolls is
related to the parameters A and 7y by
hy —h, Y

hy 2+ ny/2

This brief résumé of the mechanics of plastic deformation of a strip passing
between rolls has omitted many aspects of the problem which are important in
the technological process. In cold rolling, strain hardening of the strip during
deformation is usually significant. It can be included in the theory in an approxi-
mate way by permitting the yield stress & to be a prescribed function of defor-
mation and hence of x in equation (10.17). Internal heating due to plastic
work also influences the value of k. The rolls flatten appreciably by elastic

i

¥



Calendering and lubrication 328

deformation. It is usual to calculate this by assuming that the contact pressure
is distributed according to the Hertz theory, whereupon the rolls deform to

a circular arc of modified radius R' which is related to R by equation (10.4).
However the insensitivity of the deformation of the strip to roll radius suggests
that this is not a serious effect except in the case of very thin hard strips where
the elastic deformation of both strip and rolls is important. Finally thick billets
will “spread’ laterally during rolling so that the deformation will not be plane,
particularly towards the edges of the strip.

10.4  Lubrication of rollers

For engineering surfaces to operate satisfactorily in sliding contact it is
generally necessary to use a lubricant. Even surfaces in nominal rolling contact,
such as in ball bearings, normally experience some micro-slip, which necessitates
lubrication if surface damage and wear are to be avoided. A lubricating fluid
acts in two ways. Firstly it provides a thin protective coating to the solid
surfaces, preventing the adhesion which would otherwise take place and reduc-
ing friction through an interfacial layer of low shear strength. This is the action
known as ‘boundary lubrication’; the film is generally very thin (it may be only
a few molecules thick) and the behaviour is very dependent upon the physical
and chemical properties of both the lubricant and the solid surfaces. The lubri-
cant may act in a quite different way. A relatively thick coherent film is drawn
in between the surfaces and sufficient pressure is developed in the film to support
the normal load without solid contact. This action is known as ‘hydrodynamic
lubrication’; it depends only upon the geometry of the contact and the viscous
flow properties of the fluid. The way in which a load-bearing film is generated
between two cylinders in rolling and sliding contact will be described in this
section. The theory can be applied to the lubrication of gear teeth, for example,
which experience a relative motion which, as shown in §1.5, is instantaneously
equivalent to combined rolling and sliding contact of two cylinders.

A thin film of incompressible lubricating fluid, viscosity n, between two
solid surfaces moving with velocities ¥; and V, is shown in Fig. 10.11. With thin,
nearly parallel films velocity components perpendicular to the film are negligible
so that the pressure is uniform across the thickness. At low Reynolds’ Number
(thin film and viscous fluid) inertia forces are negligible. Then, for two-
dimensional steady flow, equilibrium of the shaded fluid element gives
\ 2

a_p_if_i(n?ﬁ)=n§_” (10.27)

ax 0z 9z \ 0z 0z2
where v is the stream velocity. Since 8p/ax is independent of z, equation (10.27)
can be integrated with respect to z. Puttingv = V, and V; at z = 0 and 4 gives
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a parabolic velocity profile as shown, expressed by

v(z)= ;7; :% Z*—hz) + (V= Vo) (z/h) + V, (10.28)

The volume flow rate F across any section of the film is

F=J‘hv(z)dz=—-h—3—(j£) W+ Vz)%

0 12n
For continuity of flow  is the same for all cross-sections, i.e.
h*
F=h+1,) ?

where h* is the film thickness at which the pressure gradient dp/dx is zero.
Eliminating F gives

4 6(V+V)(h——h*) (10.29)
dx_ v 2 PE . .

,,,,,,,,

film. Given the variation in thickness of the film A(x), it can be integrated to
give the pressure p(x) developed by hydrodynamic action. For a more complete
discussion of Reynolds’ equation the reader is referred to books on lubrication
(e.g. Cameron, 1966). We shall now apply equation (10.29) to find the pressure
developed in a film between two rotating cylinders.

(a) Rigid cylinders
The narrow gap between two rotating rigid cylinders is shown in Fig.
10.12. An ample supply of lubricant is provided on the entry side. Within the

Fig. 10.11
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region of interest the thickness of the film can be expressed by
h=hy+ x%2R (10.30)

where 1/R = 1/R, + 1/R, and A is the thickness at x = 0. Substituting (10.30)
into (10.29) gives

dp _on(i+73) {1 — (n*/ho) +'(x2/2Rho)}
dx ho? (1 + x*/2Rho)’

By making the substitution v = tan™ {x/(2Rh4)"/?} equation (10.31) can be
integrated to give an expression for the pressure distribution:

(10.31)

ho? sin 2
0 p ’Y+ Y

QRA)'? en(i+Vy) 2 4

3 sin 2 sin 4
—sec? y* (—7+ Lo 7)+A
8 4 32

(10.32)

where v* = tan™ {x*/(2Rho)¥/?} and x* is the value of x where # = A * and
dp/dx = 0. The values of v* and A4 are found from end conditions.

We start by taking zero pressure at distant points at entry and exit, i.e.
p = 0 at x = +oo, The resulting pressure distribution is shown by curve A in

Fig. 10.12. Lubrication of rigid rollers. Broken line — pressure distribution
with a complete film. Solid line — pressure distribution without negative
pressure.

Incomplete film
e
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Fig. 10.12. It is positive in the converging zone at entry and equally negative
in the diverging zone at exit. The total force P supported by the film is clearly
zero in this case. However this solution is unrealistic since a region of large
negative pressure cannot exist in normal ambient conditions. In practice the
flow at exit breaks down into streamers separated by fingers of air penetrating
from the rear. The pressure is approximately ambient (i.e. zero) in this region.
The precise point of film breakdown is determined by consideration of the
three-dimensional flow in the streamers and is influenced by surface tension
forces. However it has been found that it can be located with reasonable
success by imposing the condition

¥ -0

dx
at that point. When this condition, together with p = 0 at x = —oo is imposed
on equation (10.32) it is found that y* = 0.443, whence x* = 0.475(2Rho)"/2.
The pressure distribution is shown by curve B in Fig. 10.12. In this case the
total load supported by the film is given by

x*
p= f p(x) dx = 2.45(V; + Vy)Rnfhy (10.33)
In most practical situations it is the load which is specified; equation (10.33)
then enables the minimum film thickness %, to be calculated. For effective
hydrodynamic lubrication 2, must not be less than the height of the inevitable
capacity of the film is generated by rolling action cb_aéc;ﬁqr_i_s_qg_gy_j;_hg‘g(_)_r__r}_'-_
bined velocities (V; + ¥3). If the cylinders rotate at the same peripheral speed

in opposite directions (V; + V,) is zero, no pressure is developed and the film
collapses.

(b) Elastic cylinders
At all but the lightest loads the cylinders deform elastically in the
pressure zone so that the expression for film profile becomes

h(x) = ho + x2[2R + {i1;1(x) = 1 (0)} + {@5(x) — 2 (0)}

where the normal elastic displacements of the two surfacesii,; and i1,, are
given by equation (2.24b). Thus

2 x
h(x)=hg +(x2/2R)—7ch p(s)In ds (10.34)

This equation and Reynolds’ equation (10.29) provide a pair of simultaneous
equations for the film shape k(x) and the pressure p(x). They can be combined
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into a single integral equation for (x) which has been solved numerically by
Herrebrugh (1968). The deformed shape is shown in Fig. 10.13(4). This film
shape is then substituted into Reynolds’ equation to find the pressure distribu-
tion p(x), as shown inEig.-10.13(z). The solunondapends upon a single non-
dimensional parameterJ {PZ/nR(VI + 7V )1rE*}”2 ‘which is a measure of the
ratio of the pressure generated hydlodynamlcally iii the film to the pressure to
produce the elastic distortion. The parameter is zero for rigid cylinders and
increases with increasing elasticity. It is evident from Fig. 10.13 that the effect

of elastic deformation is to produce a film which is convergent over most of its
effectlve length like a tilting pad thrust bearing. On the other hand asthe

Fig. 10.13. Lubrication of elastic rollers with an isoviscous lubricant.
A:J =0 (rigid), B: J = 0.536, C: J = 7.42, D: J = 143. (a) Pressure
distribution p(x); (») film shape A(x).

6m0 (7, + V) RFP

$ 0
-1.0 o] x/x* 1.0
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elastic flattening becomes large compared with the film thickness, the pressure
distribution approaches that of Hertz for unlubricated contact.

From the point of view of effective lubrication it4sthe-minimum film
thickness 41,;, which is important. In all casesfhmm ~ 0.8h*) The variation in
the non-dimensional film thickness H Ethin/hR(‘Vﬁ’deith the parameter
J is given in Table 10.1. For rigid cylinders (J = 0) the minimum thickness is
hg, given by equation (10.33). We see from the table that, by permitting a more
favourable shape for generating hydrodynamic pressure, elastic rollers give thicker
films under the same conditions of speed and loading.

This mode of lubrication behaviour in which the elastic deformation of the
solid surface plays a significant role in the process is known as elastohydrodynamic
lubrication. (See Dowson & Higginson, 1977). h

(c) Variable viscosity

_ So far we have considered the viscosity n to be a constant property of
the-lubricating fluid, but in fact the viscosity of most practical lubricants is very
sensitive to changes in pressure and temperature. In a non-conforming contact
the pressures tend to be high so that it is not surprising that the increase in
vicosity with pressure is also a significant factor in elastohydrodynamic lubrica-
tion. Particularly during sliding, frictional heating causes a rise in temperature
in the film which reduces the viscosity of the film. However, for reasons which
will become apparent later, it is possible to separate the effects of pressure and
temperature. To begin with, therefore, we shall consider an isothermal film in
which the variation in viscosity with pressure is given by the equation

n="o eap (10.35)
where 7 is the viscosity at ambient pressure and temperature and « is a constant
pressure coefficient of viscosity. This is a reasonable description of the observed

variation in viscosity of most lubricants over the relevant pressure range. Substi-
tuting this relationship into Reynolds’ equation (10.29) gives

. dp h— h*
& — = bm(Vi+ V)|~ ) (10.36)

Table 10.1

p2 1/2
} 0 (rigid) 0.536 2.34 7.42 26.9 143

J=
{nR(Vl + Vy)mE*

thin
nR(N+ 13)

H

H 2.45 2.91 4.11 6.05 9.51 17.6
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This modified Reynolds’ equation for the hydrodynamic pressure in the field
must be solved simultaneously with equation (10.34) for the effect of elastic
deformation on the film shape. Numerical solutions to this problem have been
obtained by Dowson et al, (1962). Typical film shapes and pressure distributions
are shown in Fig. 10.14. The inclusion of the pressure viscosity coefficient

a introduces a second non-dimensional parameter

K= {a?P?/noR*(Vy + V)12

Comparing Figs. 10.13 and 10.14 shows that the pressure-viscosity effect
has a marked influence on the behaviour. Over an appreciable fraction of the
contact area the film is approximately parallel. This follows from equation
(10.36). When the exponent ap exceeds unity the left-hand side becomes small,
hence 4 —h™ becomes small, i.e. 4 = h* = constant. The corresponding pressure
distribution is basically that of Hertz for dry contact, but a sharp pressure peak
occurs on the exit side, followed by a rapid drop in pressure and thinning of the
film where the viscosity falls back to its ambient value ny. Dowson ef al, (1962)
have shown that allowing for the compressibility of the lubricant attenuates
the peak to some extent. A more realistic equation for the variation of viscosity

Fig. 10.14. Numerical solution of the elastohydrodynamic eqgs. (10.34)
and (10.36) from Dowson et al. (1962). Values of J and K: A 0.54,
18;B 1.7,58;C5.4,180;D 17,580;E 54, 1800; F oo, o= (dry).

(a) Pressure distribution, (») Film shape.
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with pressure together with some shear thinning of the lubricant is likely to
reduce the intensity of the theoretical peak still further.

Nevertheless these characteristic features of highly loaded elastohydro-
dynamic contacts - a roughly parallel film with a constriction at the exit and
a pressure distribution which approximates to Hertz but has a sharp peak near
the exit ~ are now well established by experiment (see Crook, 1961; and
Hamilton & Moore, 1971). The minimum film thickness is about 75% of the
thickness in the parallel section.

In the range of their computations Dowson & Higginson’s results can be
expressed approximately by

H = 1.4K0-540.06 (10.37)

Under these conditions the film thickness is weakly dependent upon the
elasticity parameter J. The question now arises: under what conditions is it
appropriate to neglect elastic deformation and/or variable viscosity? This
question has been considered by Johnson (197056) which has led to the follow-
ing guidelines. If the parameter J < 0.3 and K < 0.7 deformation and variable
viscosity are negligible and the analysis in section (2) is adequate, The relative
importance of variable viscosity and elasticity depends upon a parameter
(K?2/73)!%, For values of this parameter less than about 0.4, changes in viscosity
are negligible compared with elastic effects and Herrebrugh’s analysis given in
section (b) above is appropriate. This condition is likely to be met only with
rubber or other highly elastic polymers (using typical lubricants) where large
elastic deformations are obtained at relatively low pressures. Dowson

& Higginson’s results on the other hand require that (K2/7%)"/* should have

a value in excess of about 1.5. This is the engineering regime of metal surfaces
lubricated with typical mineral oils. Values of non-dimensional film thickness
H with appropriate values of K, taking (K 2//3)'/* = 4, are given in Table 10.2.

Table 10.2
(12)”4_ A K 0 (isoviscous) 50 100 500 1000 5000
J3 J 0 (rigid) 2.1 3.4 9.9 15.8 46.2
Dowson & H 245 12 18 46 68 175
Higginson
eq. (10.37)
Grubin H — 14 21 53 80 203

eq. (10.43)
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It is evident from this table that the combined effect of elastic deformation
and variable viscosity is to increase the minimum film thickness by one to two
orders of magnitude compared with the equivalent thickness for an isoviscous
fluid and rigid rollers.

Although solutions of the elastohydrodynamic equations on the computer
provide valuable data, they do not give the same insight into the mechanics of
the process as an early approximate treatment by Grubin (1949), extended
later by Greenwood (1972). Grubin realised that in a high pressure contact
with a pressure-sensitive lubricant, such that ap, appreciably exceeds unity
(apy > 5, say), Reynolds’ equation (10.36) demands that the film must be
nearly parallel in the high pressure region with a thickness & =~ h*. He assumed
therefore that the elastic deformation of the rollers is the same as in dry contact
and that a parallel film of thickness #* exists over the length 2a of the Hertz
flat. The elastic displacements outside the parallel zone are found by substituting
the Hertz pressure distribution into equation (2.245b), whereupon the film shape
in the entry zone is given by

arx/x? 1/2 x /x? 1/2
Hx) = %+ — _(__1) —In{—+(——l) }]
) ZR[a a’ a a?

A good approximation to this cumbersome expression in the relevant region is

112 X 3/2
hG) =k (7) (10.38)

where x (= —(x + a)) is measured from the edge of the parallel zone x = —
(see Fig. 10.15). We now define a reduced pressure p’ by

p'=(1—e*%)a
or

1
p=—-In(1—ap") (10.39)
Qa

Substituting (10.38) and (10.39) into the hydrodynamic equation (10.36) gives

W (@*/3R)(2x/a)*'?
& — 6770(Vl + V) [{(a2/3R)(2X/IZ)3/2 + h*}3]

or, by writing (2+/2 a%/3Rh*)*3(x/a) = &,
dp’ 3Rh* 2/3 a 23/2
770( 1 2 (2\/2 112) h*z (23/2 + 1)3

i (10.40)

This equation can be integrated directly for the build-up in pressure in the entry
region, taking p' = 0 at £ = oo, At the start of the parallel section (¢ = 0)

IRR* \273 23/2
po=6770(V1+ V2)( 2) h*zf (23/2_}_ 1)3
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Now

o0 g3/2 dg 3
fo (w£3/2 Ty = 0.255

so that

(10.41)

’

Do
It is clear from equation (10.39) that the reduced pressure p' cannot exceed
1/a otherwise the actual pressure becomes infinite. This condition sets a lower
limit on the value of the film thickness A*, hence

h* > 1.417 {amo(V; + V)}3 4RV 24714 (10.42)

Furthermore, since Grubin’s treatment is restricted to high pressures in which
ap, appreciably exceeds unity, apg will approach unity very closely and hence
the right-hand side of (10.42) will be a good approximation to the actual thick-
ness of the film in the parallel section. Remembering that, by Hertz, a? = 4PR/
nE*, equation (10.42) can be rewritten in the form

H = 0.89K07577025 (10.43)

nO(I/l + V2) }3/4 R1/2

1/4

h* =1.417 {
a

Fig. 10.15. Elastohydrodynamic lubrication of rollers: the Grubin—‘
Greenwood idealisation.
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Values of H deduced from this approximate expression are compared with those
from the computer solutions in Table 10.2. The agreement is reasonably good.

The analysis so far has been concerned entirely with the converging region at
entry and has demonstrated that the film thickness in the parallel zone is deter-
mined to good approximation by the flow in this region. It also shows that the
film thickness is relatively insensitive to load. Increasing the load increases the
length 22 of the parallel zone, but this has only a marginal effect on the shape
of the entry zone and hence upon the film thickness.

The assumption in Grubin’s theory of a parallel zone of thickness approxi-
mately equal to 2* cannot be correct at exit. Here the pressure gradient must
become negative, for which Reynolds’ equafion demands that # must fall below
k*. This is the reason for the constriction in the film at exit which is a feature
of all elastohydrodynamic film profiles. Greenwood (1972) has extended Grubin’s
analysis to cover the exit zone by postulating a slightly shortened parallel zone.
The pressure distribution within the parallel region required to produce this
form of elastic deformation is found from equation (2.45). It is illustrated in
Fig. 10.15. The elastic pressure is zero at the entry to the parallel zone, but rises
to a sharp singularity at the end of the flat followed by a constriction in the film.
Both the pressure spike and the constriction in the film reflect the characteristic
features of the computer solutions for values of apy > 5. At practical speeds the
entry conditions are independent of the exit conditions so that the value of
h* given by equation (10.42) is unchanged by Greenwood’s modification. The
minimum thickness which occurs in the exit constriction is found to be 75—80%
of h*.

-  The mechanism of elastohydrodynamic lubrication with a pressure-dependent
lubricant is now clear. Pressure develops by hydrodynamic action in the entry
region accompanied by a very large increase in viscosity. The film thickness at
the end of the converging zone is limited by the necessity of maintaining

a finite pressure. This condition virtually determines the film thickness in terms
of the speed, roller radii and the viscous properties of the lubricant. Increasing
the load increases the elastic flattening of the rollers with only a minor influence
on the f1lm thickness. The highly viscous fluid passes through the parallel zone
until the pressure and viscosity collapse at the exit, which requires a thinning

of the film. The inlet and exit regions are effectively independent; they meet

at the end of the parallel zone with a discontinuity in slope of the surface which
is associated with a sharp peak in pressure.

We can now return to the effect of temperature on viscosity. Viscous dissi-
pation occurs in the entry region even without sliding, i.e. when V; =V, . The
dissipation gives rise to a resistance to rolling (Crook, 1963) and to a rise in
temperature, which both increase with viscosity and rolling speed. Studies of
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viscous heating at entry by Murch & Wilson (1975) have shown that it will not
affect the film thickness appreciably until the parameter (V; + V,)?(dno/d9)/K
exceeds unity, where (dno/d@) is the rate of change of viscosity with temperature
and KX is the thermal conductivity of the lubricant. Experiments have demon-
strated that the appropriate values of 1o and o to use in the theory are those at
the temperature of the rolling surfaces.

When sliding accompanies rolling (¥; # V3 ) the whole film is sheared, giving
rise to a resultant tractive force and much more severe viscous heating than in
pure rolling. The value of the traction and the consequent temperature rise
depend upon the shear properties of the lubricant in the high-pressure zone.
There is clear evidence of non-Newtonian behaviour in this region and appropriate
constitutive equations for the fluid at high pressure, such as those suggested by
Johnson & Tevaarwerk (1977), are necessary in order to predict the tractive
forces. Such calculations are beyond the scope of this book. Fortunately the
film is established in the entry zone and shear heating in the parallel zone occurs
too late to affect its thickness appreciably. Measurements of the film thickness
(2) by Dyson et al. (1956) using electrical capacitance and (5) by Wymer
& Cameron (1974) using optical interferometry give good support for the
isothermal theory both with and without sliding.

The elastohydrodynamic lubrication of point contacts has been studied by
Archard & Cowking (1956), Cheng (1970) and Hamrock & Dowson (1977)
leading to formulae for the film thickness.
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Dynamic effects and impact

111 Stress waves in solids

So far in this book we have discussed contact problems in which the rate
of loading is sufficiently slow for the stresses to be in statical equilibrium with the
external loads at all times during the loading cycle. Under impact conditions, on
the other hand, the rate of loading is very high and dynamic effects may be
important: in rolling and sliding contact at high speed the inertia of the material
elements as they ‘flow’ through the deforming region may influence the stress
field. In this chapter we shall examine the influence of inertia forces on a number
of contact problems.

Inertia forces are incorporated in the mechanics of deformable solids by the
addition in the stress equilibrium equations (2.1) of terms equal to the product
of the density of the material p and the acceleration of the material element
8%u/dr* at the point in question. When these modified equilibrium equations
are combined with the equations of compatibility and the elastic stress-strain
relations, solutions for stresses and displacements are obtained which may be
interpreted as pulses or waves which travel through the solid with characteristic
speeds (see Timoshenko & Goodier, 1951; Kolsky, 1953; or Graff, 1975).

We shall introduce the concept of a stress wave by considering the one-
dimensional example of compression waves in a thin elastic rod (see Fig. 11.1).
In this simple treatment we shall consider a stress pulse of intensity —o travelling
along the rod from left to right with a velocity ¢q. In time dr the wave front
moves a distance dx (= ¢q dt) and the element, of mass pA4 dx, acquires a velocity
v under the action of the pressure pulse, where p is the density of the material
and A is the cross-sectional area of the rod. The momentum equation for the
element is thus

—0A4 dt = (p4 dx)v = pAcqv dt
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ie.
0 =—pcCoV (11.1)

The element will have become compressed by du (= v dr), so that the strain in
the element is:

du v g (112
dx Co E . )
Eliminating ¢ and v from equations (11.1) and (11.2) gives an expression for
the velocity of the pulse:

co=(E/p)"" (11.3)
which is a characteristic of the material. Since elastic strains are generally small,
it is clear from equation (11.2) that the velocity v of particles of the rod is
much less than the velocity of the pulse ¢g. We note that in a compressive wave,
such as we have been considering, the particles move in the same direction as
the wave; whereas in a tension wave they move in the opposite direction.

To illuminate our discussion in-the next section of the impact of solid bodies,
it is instructive now to consider the wave motion set up in a thin elastic rod
(Fig. 11.1) fixed at one end and struck on the other by a rigid block of mass
M, moving with velocity V. Any tendency of the rod to buckle will be ignored.
Immediately after impact the left-hand end of the rod acquires the velocity of
the block V and a compression wave propagates along the rod with velocity cq
given by (11.3). The initial compressive stress in the rod, given by equation (11.1)
is—pcoV. The block decelerates under the action of the compressive force in
the rod at the interface with the block. The sequence of events then depends
upon the mass of the striker M compared with the mass of the rod pAL.

A light striker is rapidly brought to rest by the compression in the rod; the
pressure of the rod on the block decreases as the velocity of the block decreases.
There is then a large variation in stress along the rod from —pcqV at the wave
front to a small value at the interface with the block. Meanwhile the pressure

Fig. 11.1. Impact of a rigid mass M on the end of an elastic rod. A com-
pressive wave of intensity —a propagates along the rod with velocity c¢,.

V dx=cpdt Co /
V7777777 )
/ = !
M 1 /
(100000 , Il ¢
du/ v

—
b~
1




Dynamic effects and impact 342

wave is reflected at the fixed end of the rod. When the reflected wave returns to
the free end it accelerates the block and is itself partially reflected. Thus the
block rebounds from the end of the rod with a velocity less than ¥ and the rod
is left in a state of vibration. The maximum stress in the rod as a result of the
impact is pcgV, which is independent of M, It occurs first at the instant of
impact and again when the reflected wave impinges on the block.

At the other extreme, if the mass of the striker is much larger than that of
the rod, the pressure wave is reflected up and down the rod many times before
the block is brought to rest. The state of stress in the bar at any instant is
approximately uniform throughout its length and the sudden changes in stress
associated with the passage of the stress wave in the rod are small compared
with the general stress level. The stress in the rod can then be found to a good
approximation by ignoring dynamic effects in the rod and treating it as a ‘light
spring’. The maximum stress in the rod, which occurs at the instant the striker
comes to rest, can be found by equating the maximum strain energy stored in
the bar to the loss of kinetic energy of the striker, with the result:

Omax = VIME/AL)"?

which does depend upon M and is very different from the previous result. An
analysis of a dynamic problem on these lines in which inertia forces in the
deforming material are neglected is usually referred to as quasi-static since the
external dynamic loads are taken to be in ‘equilibrium’ with a statically deter-
mined stress field. :

The two extreme cases described above arise when the mass of the striker
is either much smaller or much larger than the total mass of the rod; put another
way these conditions correspond to a time for the mass to come to rest which
is either short or long compared with the time for a stress wave to travel to the
end of the rod and back. When these times are similar the behaviour is much
more complex. This problem and others involving the longitudinal impact of
rods are discussed by Goldsmith (1960) and Johnson (1972).

So far we have assumed perfectly elastic behaviour, but impact stresses are
generally high and inelastic deformation plays an important part in practical
impacts. For elastic behaviour the stress given by equation (11.1) must be less
than the yield stress Y, for which the impact velocity

v< Y/pc (11.4)

The Jongitudinal wave speed in steel, given by (11.3), is about 5200 m/s. Taking
Y = 300 N/mm?, the maximum impact velocity for elastic deformation is

7.5 m/s. At speeds below this value, elastic hysteresis in the steel causes the
elastic waves to attenuate slowly with distance traveiled. Above this speed the
end of the bar becomes plastically deformed and the elastic wave travelling at
¢ is followed by a slower moving plastic wave.
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In extended three-dimensional elastic bodies two types of wave motion are
possible: (i) dilatational (or pressure) waves in which the material elements
fluctuate in volume without shear deformation and (ii) distortional (or shear)
waves in which the elements distort without change in volume, The speeds of
propagation of these waves in isotropic materials are given by:

2(1—v)G?

ditatation: ¢; = { ——— (11.5)
(I1—=)p

distortion: ¢, = (G/p)'"? (11.6)

where G is the elastic shear modulus.

Forv = 0.25,¢; =+/3 ¢, . If the wave front is planar, which would be
approximately so at a large distance from a point source, the motion of the
material particles in a dilatational wave is in the direction of propagation of
the wave front and the waves are sometimes described as longitudinal, In
a distortional wave, on the other hand, the particles move at right angles to
the direction of propagation of the wave so that the waves are then referred
to as transverse,

Where the solid body is bounded by a plane or near-planar surface, such as
we are concerned with in elastic contact problems, waves known as Rayleigh
waves may be propagated along the surface with a velocity

c3 = ac, = a(G/p)'"? (11.7a)
where « is the root of the equation
(2—a®)* = 16(1 —a*)(1 —a?cy/c?) (11.7p)

The value of a depends upon Poisson’s ratio; for y = 0.25, & = 0.919, and for
v=0.5,a=0.955, so that the speed of surface waves is just slightly less than
that of distortion waves. Values of the wave velocities in a few common solids
are given in Table 11.1

11.2 Dynamic loading of an elastic half-space
The starting point for our consideration of the static loading of an
elastic half-space in Chapters 2 and 3 was the action of a concentrated force

Table 11.1. Elastic wave velocities (m/s)

Steel Copper Aluminium  Glass Rubber
1-dimensional Co 5200 3700 5100 5300 46
tens./compr,
Dilatational cq 5900 4600 6300 5800 1100
Distortional ca 3200 2300 3100 3400 27

Rayleigh c3 3000 2100 2900 3100 26




Dynamic effects and impact 344

applied normal to the surface. The stresses and deformations due to distributed
loads could then be found by superposition. The equivalent problems in dynamic
loading are those of a concentrated line or point force P which is (a) applied
suddenly and then maintained constant - a step ~ or (») an impulse

X At
p=[]"rar]
0 At—0

or (¢) an harmonically varying force P = P* cos wt. Each of these fundamental
solutions can be used to build up a distributed load by superposition with respect
to position on the surface and a time-varying pulse P(¢) by superposition with
respect to time. _ :

The wave motion initiated in a half-space by a step point force has been
analysed by Pekeris (1955) and is depicted in Fig. 11.2. Following the applica-
tion of the load at time ¢ = O, spherical wave fronts of pressure (P) waves and
shear (S) waves propagate from the point of application of the load with

Fig. 11.2. Wave motion in an elastic half-space caused by a step load P,.
(@) Wave fronts, (b) Normatl displacement at the surface z = 0. (v =3.)
0,:<0

Py, t>0
R-wave
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velocities ¢, and ¢, . At point 4, within the solid, distance R, = (r,® + z,2)'/?
from O, the material is unstressed until a time ¢ = Ry /c,, when the P-wave
arrives, and it experiences a step radial displacement; at a later time r = R /c,,
the S-wave arrives imparting a step circumferential displacement. The magni-
tude of the displacement decreases as 1/R and of the stresses as 1/R*. The
interaction of the P-wave with the free surface of the half-space initiates

a weak disturbance - the ‘head wave’ or SP-wave - which propagates with
velocity ¢, as shown in Fig. 11.2(2) and which influences slightly the dis-
placements and stresses experienced by a subsurface point such as 4,. The
interaction of the S-wave with the free surface gives rise to the Rayleigh wave
which we have seen propagates with a velocity cj slightly less than the S-wave,
and influences points which are on or close to the surface. The time-history of
normal displacement iz, of points on the surface is shown in Fig. 11.2(). It is
evident that the predominant effect is that of the Rayleigh wave which decays
as 1/R'"?  which is more slowly than either P or S waves. After the Rayleigh
wave has passed, the surface is left with its static displacement under the action
of a steady force Py, given by equation (3.22b).

The effects of an impulsive line load and harmonically varying line and point
loads have been analysed in a classic paper by Lamb (1904). We shall consider
a point load

P(t) = P* cos wt (11.8)
acting normally to the surface at the origin O. In the steady state, the wave
system comprises P-waves moving with velocity ¢; and S-waves moving with
velocity ¢, on spherical wavefronts centred at O. In addition Rayleigh waves
radiate outwards on the surface of the half-space with velocity c5.

Within the body, at a radial distance R from O which is large compared with
the wavelength, the radial displacement ug is entirely due to the pressure wave
and is given by (Lamb, 1904; Miller & Pursey, 1954)

P*  cosf (u?—2sin?0)
B 2nGR Fo (sin @)
The transverse displacement ug is due to the shear wave and is given by
i3 P* sin 20 (u? sin® 0 — 1)!/?
N 2nGR Fo (usin 9)
In equations (11.9), 8 = cos™'(z/R), k1 = w/cy, k, = w/c,,
p=cifer = {2(1 —v)/(1— w)}'"2,
Fo(§) = (282 —u®)? — 482> — )2 ¢* — D2
On the surface at a distance r from O, which is again large compared with the
wavelength, the displacements iz, and i1, are due to the Rayleigh wave and are

cos (wt —k1R) (11.92)

Ur

Uy sin (wt —k,R) (11.9p)
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given by
P /g3 \1/2
arz——(—) F,(v) sin (wt — kzr —m/4) (11.10a)
G \2ar
Pr [ g3\ 12
L‘¢Z=—(~—) F,(v) cos (wt —ksr —m/4) (11.10b)
G \2ar

where k3 = w/cs; F,(v) and F,(v) are functions of Poisson’s ratio (see Miller
& Pursey, 1954). Forv = O./25,F,(V) = 0.125, F,(v) = 0.183,

Equations (11.9) and (11.10) are not accurate close to the origin but, in
any case, the displacement and corresponding stresses become infinite at the
point of application of a concentrated force (as R and r approach zero). The
more realistic situation of a uniform pressure p acting on a circular area of
radius ¢ and oscillating with angular frequency ¢ has been analysed by Miller
& Pursey (1954). This is the dynamic equivalent of the static problem discussed
in §3.4(a). The wave motion at a large distance from the loaded circle (R,
r> q) is the same as for a concentrated force P = map and the elastic displace-
ments are given by equations (11.9) and (11.10). The mean normal displacement
within the contact area (i1, ), is of interest since it determines the ‘receptance’
of the half-space to an oscillating force. The receptance is defined as the ratio
of the mean surface displacement (i1, ), within the loaded area to the total
load.t It is a complex quantity: the real part gives the displacement which is
in-phase with the applied force; the imaginary part gives the displacement
which is /2 out-of-phase with the force.

If we write the inverse or reciprocal of the receptance in the form

P

(@2)m
it will be recognised as having the same form as the expression for the inverse
receptance of a light spring in parallel with a viscous dashpot. The functions
f1and f, depend upon Poisson’s ratio and the frequency parameter (wa/c,).
Values taken from Miller & Pursey (1954) are shown by the full lines in Fig,
11.3. In the range considered, f; and f;, do not vary much with frequency so
that, to a reasonable approximation, the elastic half-space can be modelled by
a light spring in parallel with a dashpot. The energy ‘dissipated’ by the dashpot
corresponds to the energy radiated through the half-space by wave motion.
The stiffness of the spring may be taken to be independent of frequency and
equal to the static stiffness of the half-space given by equation (3.29); the

wa
=Ga{flcoswt—(—)f2 sinwt} (11.11)

C2

1 An alternative quantity which is commonly used to give the same information is
the ‘impedance’ which is the ratio of the force to the mean velocity of surface
points in the loaded area.
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spring and dashpot combination has a time constant T = f,a/fic, =~ 0.74a/c, .
In this way the power radiated through the half-space by wave motion can
easily be calculated to be (v = 0.25)

W= 0.074P%w?/Ge, (11.12)

Using equations (11.9) and (11.10) the partition of this energy between the
different wave motions has been found by Miller & Pursey (1955). The pressure
waves account for 7%, the shear waves for 26% and the surface waves for 67%
of the radiated energy. If we note that the pressure and shear waves decay in
amplitude (neglecting dissipation) with (distance)™! whilst the surface waves

Reciprocal receptance P/ii,

Fig. 11.3. Receptance functions f; and f, for an elastic half-space: solid
line - uniform pressure on circle radius a; large-dashed line - uniform
pressure on strip width 2a; chain line - uniform pressure on semi-
infinite rod; small-dashed line -~ uniform displacement on circle radius a.

e e
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decay with (distance) /2, it is clear that the predominant effect at some
distance from the point of excitation is the surface wave. This explains why
earthquakes can be damaging over such a large area.

The spring and dashpot model can be applied to other situations. A semi-
infinite thin rod transmits one-dimensional longitudinal waves as described in
§1. In view of its infinite length the rod has zero static stiffness in tension and
compression. By equation (11.1) the.force on the end of the rod is propor-
tional to the velocity of the end. Thus under the action of an oscillating force
the rod acts like a pure dashpot. The function f; = 0 and f, = 3.84. Miller
& Pursey (1954) have also considered an elastic half-space loaded two-
dimensionally by an oscillating pressure applied to a strip of width 24. In this
case the functions f; and f, show larger variations with frequency (Fig. 11.3).

With an interest in the motion transmitted to the ground through the
foundation of a vibrating machine, Arnold ef al. (1955), Robertson (1966) and
Gladwell (1968) studied the allied problem of a circular region on the surface
of an elastic half-space which is oscillating with a uniform normal displacement.
In this case the pressure distribution is not uniform. The receptance functions
fiand f; computed by Gladwell are also plotted in Fig. 11.3. Not surprisingly
they do not differ much from the case of a uniform pressure. When w — 0,
fiis given by the static displacement under a circular rigid punch (eq. (3.36)).

In this section we have considered the stresses and displacements in an elastic
half-space in response to a sinusoidally oscillating pressure applied to a small
circular region on the surface. In the language of the vibration engineer we
have determined its linear dynamic response to harmonic excitation. In the
next section, dealing with impact, we shall be concerned with the response of
the half-space to a single pressure pulse. However, if the variation of the pulse
strength with time P(¢) is known it can be represented by a continuous
spectrum of harmonic excitation F(w) by the transformation

I\/2 poo
Flw) = (;) f P(t) €t dt (11.13)
The response to harmonic excitation at a single frequency > has been presented
in this section. The response to a spectrum of harmonic excitation #(w) can

be found by superposition, i.e. by integration with respect to . In practice,

the integration is seldom easy and requires numerical evaluation.

Finally we note that, although our discussion has been restricted to the
dynamic response of a half-space to purely normal forces, behaviour which is
qualitatively similar arises when tangential forces or couples are applied to the
surface. For example, a light circular disc of radius a attached to the surface,
in addition to a purely normal oscillation discussed above, can undergo three
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other modes of vibration: translation parallel to the surface, rocking about an
axis lying in the surface, and twisting about the normal axis. Receptance func-
tions for each of these modes are conveniently summarised by Gladwell (1968).

113 Contact resonance
In the previous section we saw that an elastic half-space responds to

an oscillating force applied to the surface like a spring in parallel with a dashpot.
If now a body of mass m is brought into contact with the half-space the resulting
system comprises a mass, spring and dashpot, which might be expected to have
a characteristic frequency of vibration and to exhibit resonance when subjected
to an oscillating force.

We shall consider first the case of a rigid mass attached to the half-space
over a fixed circular area of radius 2. This is the problem investigated by Arnold
et al. (1955). It has obvious application to ground vibrations excited by heavy
machinery and also the vibration of buildings excited by earth tremors (Richart
et al., 1970). For motion normal to the surface, receptance of the half-space is
given by (11.11), so that, denoting the displacement of the mass by u,, the
equation of motion of the system when excited by an oscillating force
P cos wt is: N

mii, + (Ga*fy Je; )ity + Gafiit, = P cos wit (11.14)

The frequency of free vibrations is wo(1 — ¢*)*/?, where the undamped
natural frequency wy is given by

weo* = Gafy/m (11.152)
and the damping factor ¢ by
= %(fZ/fl)(wOa/CZ) = %(fz/fll/z)(Pa3/m)l/2 (11.15b)

A sharp resonance peak will be obtained if ¢ < 1. Now 3(f;/fi'/?) =~ 1, so that
the damping factor due to wave propagation is small if the mass of the attached
body is large compared with the mass of a cube of the half-space material of
side . In this case the resonant frequency is very nearly equal to wy, given by
equation (11.15a). Resonance curves for different values of (pa®/m) are plotted
for the different modes of vibration in Arnold ez al. (1955).

We shall turn now to the situation where two non-conforming bodies are
pressed into contact by a steady force Py and then subjected to an oscillating
force AP cos wt. As in static contact stress theory we take the size of the
contact area to be small compared with the dimensions of either body, in
which case it follows that the parameter (pa®/m) must be small for both bodjies.
This means that the vibrational energy absorbed by wave motion is small.
Hence, for either body, the damping term in equation (11.14) is negligible
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and the elastic stiffness term is given by the static stiffness Gaf; (w = 0). Since
both bodies are deformable the effective ‘contact spring’ between them is the
series combination of the stiffness of each body regarded as an elastic half-
space. The mass of each body may be considered to be concentrated at its
centroid. It is then a simple matter to calculate their frequency of contact
resonance.

The frequency of contact resonance may be approached from another
point of view. The relation between normal contact force and relative displace-
ment of the two bodies is given by equation (4.23) for a circular contact area
and by equation (4.26¢) for an elliptical contact. Both may be written

P=K§¥? (11.16)

where the constant X depends upon the geometry and elastic constants of the
two bodies. This relationship is nonlinear, but for small variations AP about
a mean load Py, the effective stiffness is given by

dP
s=—=3(K*P)3 (11.17)
ds
If the bodies have masses 7, and m, and are freely supported, the frequency of
contact resonance is given by

2 _ s(my+my)

myhis
As we have seen, the effective damping arising from wave propagation is negligible
but in practice there will be some damping due to elastic hysteresis as described
in §6.4,

At resonance, when large amplitudes of vibration occur, the behaviour is
influenced by the nonlinear form of the force-displacement relation (11.16).
Under a constant mean load P, the effective stiffness decreases with amplitude,
so that the resonance curve takes on the ‘bent’ form associated with a ‘softening’
spring (see Den Hartog, 1956). Thus the frequency at maximum amplitude is
less than the natural frequency given by equation (11.18), which assumes small
amplitudes. Under severe resonant conditions the two bodies may bounce out
of contact for part of the cycle.

We have seen how contact resonance arises in response to an oscillating force.
It also occurs in rolling contact in response to periodic irregularities in the
profiles of the rolling surfaces (see Gray & Johnson, 1972). The vibration
response of two discs rolling with velocity ¥ to sinusoidal corrugations of wave-
length A on the surface of one of them is shown in Fig. 11.4. With the smaller
corrugation the amplitude of vibration does not exceed the static compression,
so that the surfaces are in continuous contact. A conventional resonance curve
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is obtained. With the larger corrugation the discs bounce out of contact at
resonance and the resonance curve exhibits the ‘jump’ which is a feature of
a highly nonlinear system.

11.4  Elastic impact

The classical theory of impact between frictionless elastic bodies is
due to Hertz and follows directly from his statical theory of elastic contact
(Chapter 4). The theory is quasi-static in the sense that the deformation is
assumed to be restricted to the vicinity of the contact area and to be given by
the statical theory: elastic wave motion in the bodies is ignored and the total
mass of each body is assumed to be moving at any instant with the velocity of
its centre of mass. The impact may be visualised, therefore, as the collision of
two rigid railway trucks equipped with light spring buffers; the deformation is
taken to be concentrated in the springs, whose inertia is neglected, and the
trucks move as rigid bodies. The validitym\e;e—Mbe examined
subsequently.

(a) Collinear impact of spheres

The two elastic spheres, of mass m; and m,, shown in Fig. 11.5, are
moving with velocities v,; and v,, along their line of centres when they collide
at 0. We shall begin by considering collinear impact in which vy = vy = Wy =

Fig. 11.4. Contact resonance curves for rolling discs with one corrugated
surface. Corrugation amplitude/static compression: circle ~ 0.30; cross -
0.55.
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wy, = 0. During impact, due to elastic deformation, their centres approach
each other by a displacement §,. Their relative velocity is v, — v, = d6,/dt
and the force between them at any instant is P(¢). Now

dvzl dvz2
P= m; — = —m,
dr de
hence
nty + nt, d d25z
- P=— (v~ v) = —, (11.19)
mim, dt dr

The relationship between P and §, is now taken to be that for a static elastic
contact given by equation (4.23), Le.
P=(4/3)RV2E*§ 32 = K§ 312 (11.20)
where 1/R = 1/R,+1/R, and 1/E* = (1—v5/E, +(1 —v,%)/E. Writing
1/m for (1/my+ 1/my) we get
d%s,
"

= K53/ (11.21)

Integrating with respect to §, gives

ds,\? K
1 V2_(_i)}=2_55/2
R e

Fig. 11.5
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where V; = (v;2 — vz1)r =0 is the velocity of approach. At the maximum com-
pression 8%, d§,/dr = 0, which gives

SmV2 2/5 15mV2 2/5
6*=( ) =(——z—) 11.22
‘ 4K 16R'2E* ( )
The compression-time curve is found by a second integration, thus
&% d(s,/6¥)
== (62152 (11.23)

v, J{1— (8,852}

This integral has been evaluated numerically by Deresiewicz (1968) and converted
into a force~time curve in Fig, 11.6. After the instant of maximum compression
t*, the spheres expand again. Since they are perfectly elastic and frictionless,
and the energy absorbed in wave motion is neglected, the deformation is perfectly
reversible. The total time of impact T is, therefore, given by
el *
T.=2t% = 22 4(6./52) =2.945¥/V,
V, Jo {1—(8./85)%2}172
= 2.87(m*/RE**V,)V/* 2565l < (11.24)

The ahove analysis applies to the contact of spheres or to bodies which make
elastic contact over a circular area. It can be adapted to bodies having general
curved profiles by taking the parameter K in the static compression law from
equation (4.26¢) for the approach of two general bodies. The quasi-static impact
of a rigid cone with an elastic half-space has been analysed by Graham (1973).

We can now examine the assumption on which the Hertz theory of impact
is based: that the deformation is quasi-static. In §1, when discussing the impact
of a thin rod, it was argued that the deformation in the rod would be quasi-

Fig. 11.6. Variation of compression 6, and force P with time during
a Hertz impact. Broken line - sin (m/21%*).
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static if the duration of the impact was long enough to permit stress waves to
traverse the length of the rod many times. Love (1952) suggested that the
same criterion applies in this case. For like spheres, the time for a longitudinal
wave to travel two ball diameters is 4R /c,. The time of impact, given by
equation (11.24), can be expressed as 5.6 (R3/c*¥V,)!/3, so that the ratio of
contact time to wave time ~(¥}/cq)"'5. According to Love’s frequently quoted
criterion this quantity should be much less than unity for a quasi-static
analysis of impact to be valid.

However, it now appears that Love’s criterion, at least in the form stated,
is not the appropriate one for three-dimensional colliding bodies. It clearly
leads to logical difficulties when one of the bodies is large so that no reflected
waves return to the point of impact! We shall now outline an alternative
approach due to Hunter (1956), based on the work described in the last section.
There it was shown that the dynamic response of an elastic half-space could
be found with good approximation by regarding the half-space as an elastic
spring in parallel with a dashpot; the energy ‘absorbed’ by the dashpot account-
ing for the energy radiated through the half-space by wave motion. Provided
the time constant of the system is short compared with the period of the force
pulse applied to the system, the force variation during the impact will be con-
trolled largely by the spring, i.e. in a quasi-static manner, and the energy
absorbed by the dashpot will be a small fraction of the total energy of impact.
We will now find the condition for this to be so.

The force-time variation for a quasi-static elastic impact is given by equations
(11.20) and (11.23) and is plotted in Fig. 11.6. It is not an explicit relationship
but it is apparent from the figure that it can be approximated by

P(t) = P* sin wt = P* sin (wt/2r%), 0<<t<2r* (11.25)
The spring~dashpot model of an elastic half-space has spring stiffness s(=5Ga)
and time constant T~ 0.74a/c, & 1.2a/cy. When such a system is subjected to
the force pulse expressed by equation (11.25), the energy absorbed by the
dashpot is small and the response is dominated by the spring if the relaxation
time T is short compared with the period of the pulse 2¢*. If we now take a to
be constant and equal to ¢* the ratio of times may be written

T a*v, RV,

—=~04 =04 (11.26)
2t* 6¥co a*cg

For quasi-static conditions to be approached this ratio must be much less than
unity. For comparison with Love’s criterion we consider two like spheres where
my =m, = (4/3)mpR* and R = R;/2. Equation (11.26) then reduces to

T/26% ~ 0.3(V, [co )’ (11.27)
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This is a much less restrictive condition than that put forward by Love: T/2z*
is less than 1% provided V, < 0.002¢,. As we shall see, however, a more severe
restriction is placed on the velocity of impact for the above theory to be valid
by the fact that most real materials cease to deform elastically at impact speeds
very much less than those possible under the criterion of (11.27).

Although the impact of elastic spheres at practical speeds is virtually quasi-
static, Thompson & Robinson (1977) have drawn attention to the behaviour
immediately following first contact. Under quasi-static conditions the contact
radius a is related to the indentation §, by a® = §,R, so that a grows at a rate
a=5,R/2a, where § - approximately equals the velocity of impact V. Thus,
at first contact when a is vanishingly small, z can exceed the velocity with which
elastic waves propagate on the surface. It turns out, however, that this so-called
‘super-seismic phase’ occupies a fraction of the total contact time of order
V,/c; which is insignificant.

(b) Oblique impact of spheres

If the spheres in Fig. 11.5 have a general coplanar motion then tangential
velocities at the point of impact v, and angular velocities w,, are introduced. With
frictionless surfaces the tangential and rotational motion is undisturbed by the
impact. With friction, on the other hand, tangential tractions arise at the inter-
face which influence the motion in an involved way. Denoting the resultant
friction force by Q,, the linear momentum in the tangential direction gives

d d
Ox=m m (Vx1 + WyRy) =—my E(U"z —wynRy) (11.28)

Now the moment of momentum of each sphere about the axis Oy is conserved,
ie. ’

d
m {myue Ry + my(R2 + k?)wy }

d
== {—mauxaRy + ma(R: + k¥)wy,} =0 (11.29)

where k; and k, are radii of gyration of the spheres about their centres of mass.
Eliminating w,; and w,, from (11.28) and (11.29) gives

my  duy my dvyz
0= ITRENZ @~ 1+RAp @ (11.30)
Writing m,/(1+ R?/k?) = m} and 1/m* = 1/mf +1/m5 we get
1 d%s,
;n_;Qx=&;(vxl_vx2)= pyo (11.31)
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where 6, is the tangential elastic displacement between the two spheres at the
point of contact. This equation governs tangential deformation at the contact
in the way equation (11.19) governs normal compression. Deformation under
the action of tangential forces, however, is complicated by micro-slip. If Q,,
reaches its limiting value +uP the surfaces will slip completely but if 0, < |uP|
there may be no slip, but in general an annulus of micro-slip would be expected
at the edge of the contact area where the pressure is low. The variations of
tangential traction and micro-slip arising from simultaneous variations in
tangential and normal forces have been studied by Mindlin & Deresiewicz and

the values of P and Q, but »upon__f;h_e_rhlstor)]_ of Pand _Q%_Thls approach has been
" applied to oblique impact by Maw et al. (1976, 1981).#The tangential tractions

do not affect the normal motion if the materials of the two bodies are elastically

~ similar (i.e. § as defined by eq. (5.3) is zero). However, we have seen in §5.4 that,
. even for dissimilar materials, the effect is small and may reasonably be neglected'j

The variation of contact size and contact pressure throughout the impact are thus
given by the Hertz theory of impact, independently of friction forces.

The variations of tangential traction and micro-slip throughout the impact
have been calculated step by step for different incident conditions. The elastic
constants of the two bodies enter the calculation through the ratio of the tangen-
tial to normal compliance of a circular contact (see eqgs. (7.43) and (7.44)). We
define the stiffness ratio x by .

1—v/2 N 1—v,/2

Gl GZ

1—v N 1=,

G G,

Thus k is a material constant close to unity: for similar materials and » = 0.3,
k = 0.824, The incident conditions are specified by the non-dimensional para-
meter Y =V, [uV, where V,, = (v, — Uy2)r =0 is the tangential velocity of
approach before impact. Note that tan™ (V.. /V}) is the angle of incidence with
which the surfaces approach each other at 0. The behaviour durmg the ¢ impact

Il

X |-

(11.32)

depends upon a second parameter X = km/ 2m*. For similar homogeneous

“spheres, with » = 0.3, X = 1.44. The variation in Q,, throughout the impact is

shown in Fig. 11.7 for different incident conditions. For angles of incidence
which are small compared with the angle of friction (¢ < 1) there is no slip

at the start of the impact. With larger angles of incidence (1 <y <4x —1)
the impact starts and finishes with complete slip; in between there is partial
slip. At sufficiently high incidence ( = 4x — 1) sliding takes place throughout
the complete time of impact.
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Provided that the angle of incidence is not too large it is clear from Fig.
11.7 that the tangential force Q, undergoes a reversal during the impact,
whereas the normal force completes a half cycle only. In the last section we
saw that two bodies in contact had a frequency of ‘contact resonance’ deter-
mined by the normal contact stiffness and their masses (eq. (11.18)). A similar
behaviour would be expected in tangential motion. The ratio of the tangential
to normal frequencies of contact resonance will be

wi o = (kmjm*)/? = (25" (11.33)
For solid spheres w;/w, = 1.7 which implies that the tangential force almost
completes a full cycle during the time when the normal force goes through
half a cycle.

The negative tangential force towards the end of the impact is responsible
for a negative tangential rebound. Expressing the rebound velocity V5 by the
rebound parameter ' = k V. /uV;, the rebound conditions are plotted as
a function of the incident parameter y in Fig. 11.8. The tangential rebound
velocity V7, is found to be mainly negative except when ¥ > 4y. The classical
rigid body theory of impact, which ignores contact deformation, predicts that
the tangential rebound velocity V., is either positive, if slipping is continuous,
or zero, if slipping ceases during the contact, as shown by the broken lines in
Fig. 11.8. The negative tangential rebound velocities predicted in Fig. 11.8

Fig. 11.7. Oblique impact of homogeneous solid spheres: the variation
of tangential force throughout the impact. (v = 0.3, x =1.44.)
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Fig. 11.8. Tangential velocities of incidence and rebound in the oblique
impact of homogeneous solid spheres. Broken line - rigid body theory.
A:v=03,B:v=0.5.
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_likely to arise when the coefficient of friction is _largé,'.for example, with dry
rubber surfaces. o l;

(c) Wave motion due to impact

Although the fraction of the impact energy which is radiated as elastic
waves is generally very small, in some applications such as seismology it may be
important. Tsai & Kolsky (1967) dropped steel balls onto a large block of glass
under conditions of elastic impact and measured the radial strain in the surface
waves. The variation of strain with time at a particular radial position is shown
in Fig. 11.9. An analysis was made along the following lines, The force-time
characteristic of Hertzian impact (Fig. 11.6) was assumed to apply and was

Fig. 11.9. Surface wave on a glass block produced by impact of a steel
sphere (Tsai & Kolsky, 1967). A - circles joined by dashes — approxima-
tion calculation (1967); B ~ broken line - improved calculation (Tsai,
1968). Solid line - experimental.

Surface strain
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transformed into a continuous spectrum of harmonically varying forces F(w),
according to equation (11.13). The radial surface displacement iz, due to a single
frequency of excitation is given by equation (11.10z). By substituting the force
spectrum F(w) for P, integrating with respect to w and differentiating with
respect to r, the time variation of radial strain diz,/0r due to the impact pulse

is obtained. The result of these calculations is shown by Curve A in Fig. 11.9.
The agreement with the measured strains is fairly satisfactory. A refined analysis
was then made by Tsai (1968) using the more exact expressiohs for radial
displacement given by Miller & Pursey (1954) and taking into account the
non-uniform pressure distribution and the variation in contact radius a during
the impact. The result is shown by Curve B. The refinements in the analysis

do not make a major difference to the result, but they do appear to account

for the sharp secondary peak in the measured strain pulse.

More exact dynamic analyses of elastic impact have been made by Tsai
(1971) for spherical bodies and by Bedding & Willis (1973) for the penetration
of an elastic half-space by a rigid wedge and cone.

The discussion in this section so far has been concerned with collisions
between compact bodies, in which stress wave effects account for only a small
fraction of the energy of impact and do not influence the local deformation
significantly, If one or both of the bodies is slender this conclusion no longer
applies.

Let us return to the example of a thin rod, discussed in §1, this time struck
on its end by a sphere moving with velocity V. The three-dimensional state of
stress at the end of the rod demands some degree of approximation. A conven-
ient approach is to choose a point H, just inside the end of the rod (Fig. 11.10(a)),

Fig. 11.10. (a) Impact of a sphere on the end of a slender rod; (») Spring -
dashpot model,
V

e

L L)

(@)

(®)
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and assume that quasi-static deformation due to the impact takes place to the
left of H and that one-dimensional elastic wave propagation takes place to the
right of H. The choice of the location of A is somewhat arbitrary, but for most
purposes it can be regarded as being adjacent to the end of the rod. If P(t) is
the contact force during impact, the momentum equation for the sphere gives
the velocity of its centre C to be

1 pt

vl=V——f P(t) dr (11.34)
mJo

where m is the mass of the sphere. For the rod, from equation (11.1), the

velocity of H is given by

1
v, = — P(1) (11.35)
Apcy

The approach &, of the centre of the sphere C and the point H is given by

t 1 pt t
62=J (vl—vz)dz‘=Vt——f dzf Pty de
0 mJo 0

— 1— tP(t) dr (11.36)
Apco Jo

The system can be modelled by a nonlinear spring representing the contact
deformation in series with a dashpot which represents the wave motion in the
rod (Fig. 11.10(b)). If the contact force-compression law is specified, for
example by equation (11.20) for an elastic impact, equation (11.36) can be
solved numerically to find the force-time history P(¢) and the dynamic stresses
set up in the rod. Alternatively, if the dynamic strains in the rod are measured,
equation (11.36) can be used to determine the force-~deformation law at the
point of impact (see Crook, 1952). For this technique to be satisfactory the
impact must be complete before reflected waves in the rod return to the impact
end, which requires the mass of the striker not to be too large compared with
the total mass of the rod. At the other extreme, if the striker mass is too small
U,, given by (11.35), becomes negligible compared with vy and the rod behaves
like a half-space. Davies (1948) has shown this state of affairs arises when the
diameter of the sphere is less than half the diameter of the rod.

The approach outlined above can be applied to the longitudinal impact of
two rods with rounded ends. A similar situation arises in the transverse impact
of a beam by a striker; the local force-compression behaviour is determined by
quasi-static considerations, but appreciable energy is transferred into bending
vibrations of the beam (see Goldsmith, 1960; or Johnson, 1972).
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11.5 Inelastic impact¥

(a) Onset of yield

The Hertz theory of elastic impact has been presented in the foregoing
section. An elastic-plastic material will reach the limit of elastic behaviour at
a point beneath the surface when the maximum contact pressure p, at the
instant of maximum compression reaches the value 1.607; given by equation
(6.9), where Y is the yield stress of the softer body. The maximum value p§
during elastic impact can be obtained by using equations (11.20) and (11.22)
from which

4/5 /
) GmV?)'? (11.37)

. 3 / AE*
po = 277. 3R3/4

where 1/m = 1/m; + 1/m,, 1/R = 1/R; + 1/R, and V is the relative velocity at
impact.} Substituting the critical value of p, gives an expression for the velocity
Vy necessary to cause yielding:

imVy? ~ S3R3 Y5 [E** (11.38)
In the case of a uniform sphere striking the plane surface of a large body,
equation (11.38) reduces to

V 2
p—; = 26(Y/E*)? (11.39)

where p is the density of the sphere. The impact velocity to cause yield in
metal surfaces is very small; for a hard steel sphere striking a medium hard steel
((mmmz ), Vy =~ 0.14 m/s. It is clear that most impacts between
metallic bodies involve some plastic deformation.

(b) Plastic impact at moderate speeds

In the last section we justified a quasi-static approach to finding the
contact stresses during elastic impact, provided the impact velocity is small
compared with the elastic wave speed. This condition remains valid when
plastic deformation occurs, since the effect of plastic flow is to reduce the
intensity of the contact pressure pulse and thereby to diminish the energy
converted into elastic wave motion. At moderate impact velocities (up to
500 m/s, say) we can make use of our knowledge of inelastic contact stresses
under static conditions (from Chapter 6) to investigate impact behaviour. We
shall first consider normal impact.

1 For general references see: Johnson (1972) or Zukas & Nicholas (1982).

1 Since we are concerned here with normal impact only the suffix z will be omitted.
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Up to the instant of maximum compression the kinetic energy is absorbed

in local deformation, elastic and plastic, of the two colliding bodies, i.e.

§*
%mV2=W=J P ds (11.40)

0

where 1/m = 1/m;+ 1/m, and V is the relative velocity of impact. After the

point of maximum compression the kinetic energy of rebound is equal to the

work _done during elastic recovery, thus

5%
%mV'2=W'=f P’ ds’ (11.41)
0

where primed quantities refer to the rebound. We wish to determine the
maximum contact stress, the duration of the impact and the ‘coefficient of
restitution’ (V'//V') in terms of the impact velocity ¥ and the properties of the
two bodies. We shall restrict the discussion to spherical profiles, but the analysis
may be extended to more general profiles without difficulty.

It is clear from equations (11.40) and (11.41) that the impact behaviour is
determined by the compliance relation P(8) for the contact, in both loading
and unloading. These relationships under static conditions have been discussed
in §§6.3 & 6.4 (see Fig. 6.17). In the elastic range (P < Py ) loading and unload-
ing are identical, expressed by equation (11.20)} Yield initiates at a point
beneath the surface and, as the plastic zone spreads, the mean contact pressure
rises from ~1.1Y to ~3Y when the fully plastic condition is reached. Thereupon,
in the absence of strain hardening, the contact pressure remains approximately
constant, referred to as the flow pressure or yield pressure.'}

Unfortunately the compliance relationship for an elasti¢-plastic contact is
not precisely defined, so that a theory of elastic-plastic impact is necessarily
approximate. Since most impacts between metal bodies result in a fully plastic
indentation we can concentrate on this regime. In our static analysis we assumed
(@) that the total (elastic and plastic) compression § was related to the contact
size by: & = @*/2R, i.e. neither “pile-up’ nor ‘sinking in’ occurs at the edge of
the indentation, and (b) that the mean contact pressure p,, is constant and
equal to 3.0Y. These assumptions led to the compliance relation (6.41), which
gives a fair prediction of the experimental results, as shown in Fig, 6.17. Making
the same assumptions here and using equation (11.40) gives

a*

imy? =J na*py(a/R) da = na**pq /4R (11.42)
0

where p4 is used to denote the mean contact pressure during dynamic loading.

We note that the quantity na**/4R is the apparent volume of material v, dis-

placed by an indenter of radius R. With a material which strain-hardens according
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to a power law with index » (eq. (6.73)) it has been shown by Mok & Duffy
(1965) that the right-hand side of equation (11.42) is multiplied by the factor
4n/(4n + 1) and py is the dynamic pressure at the instant of maximum com-
pression.

Taking the rebound to be elastic, the energy of rebound W' is given by
substituting equation (6.45) for the compliance relation into equation (11.41),
where P*(=ma*?p,4) is the compressive force between the bodies at the start
of the rebound. Using equation (4.22) to eliminate the radii, the kinetic energy
of rebound can be expressed in terms of the size of the indentation by

3p*2
10a*E*
Eliminating ¢* from equations (11.42 and 43) gives an expression for the
coefficient of restitution:

! !
Imvyi=w'=

= En2a*3pL/E* (11.43)

o V’2 3775/443/4 pd %sz -1/4
f=—=—\|— — (11.44)
vV 10 E* :\Pd‘iR
or, by writing p4 = 3.0Y4 where Yy is the dynamic yield strength,
e~ 38(Ya/EX) GmV YaR ) 5 3072 (11.45)

1t is clear from this analysis that the coefficient of restitution is not a material
property, but depends upon the severity of the impact. At sufficiently low
velocities (V' < Vy given by eq. (11.38)) the deformation is elastic and e is very
nearly equal to unity. The coefficient of restitution gradually falls with increas-
ing velocity. When a fully plastic indentation is obtained our theory suggests
that e is proportional to ¥ ~!*. Some experimental results taken from
Goldsmith (1960), shown in Fig. 11.11, illustrate this behaviour.

Fig. 11.11. Measurements of the coefficient of restitution of a steel ball
on blocks of various materials (from Goldsmith, 1960). Cross ~ hard
bronze; circle - brass; triangle ~ lead. Lines of slope ~—.
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The coefficient of restitution is also very dependent upon the hardness of
the material: according to equation (11.45) it is proportional to Y4*'8. Some
experiments by Tabor (1948) with different materials are compared with
equation (11.45) in Fig. 11.12. The general trend of the experiments follows
the theoryt, but the measured values of e are somewhat low.

Tabor (1948) and Crook (1952) used impact experiments to deduce the
dynamic yield pressure py. As expected they found that the dynamic pressure
was greater than the static yield pressure p,, by a factor which was somewhat
larger for soft metals whose yield stress is sensitive to rate of strain (see Table
11.2). Furthermorg it was found that the contact pressure does not remain
constant throughout the period of plastic deformation, but falls, as the striker
decelerates, to a value which is closer to the static pressure at the start of the
rebound (denoted by p, in Table 11.2). This fact accounts for the observed
coefficients of restitution being lower than those predicted by the simple
theory, which is based on the yield préssure being maintained constant up to
the instant of closest approach>

Fig. 11.12. Variation of coefficient of restitution with dynamic hardness
Pd. Solid circle - steel; triangle - Al alloy; square ~ brass; open circle -

lead.
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1 Tabor (1948) develops a theory from a slightly different premise. Instead of taking
6 =a*/2R, he assumes that the energy dissipated in plastic deformation
(W — W) = pquy, when v, is the residual volume of the indentation after rebound.
This assumption modifies equation (11.42) to read

Im(V? —3V") =pyua = ma**py/4R " (11.424)

where V' is given by equation (11.43). The influence upon the coefficient of
restitution is shown in Fig. 11.12.
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The total time of impact is made up of two parts: the time of plastic inden-
tation 7, and the time of elastic rebound t'. Making the same assumptions as
before, that the flow pressure pq is constant and that the compression § = a?/2R,
the indentation time may be easily calculated. The equation of relative motion
of the two bodies is

d’s 2 2nRp4b
m — = —mna‘pq = —2mRpy
i Pd
where 1/m = 1/m; + 1/m, and 1/R = 1/R; + 1/R,. The solution to this
equation gives

1/2

i (11.46)
ty,= .
P (8de )

which is independent of the velocity of impact. For a 10 mm diameter steel
ball impinging on softer metals #,, has values in the range 107%-107% 5. Assuming
the rebound to be elastic and governed by the Hertz theory, the rebound time
t' can be found from equations (11.45) and (11.24) with the result:

t'=1.2er, (11.47)

where the coefficient of restitution e is given by (11.45) and 7, by (11.46).
As the impact becomes more plastic, e falls and the rebound time ' becomes
a smaller proportion of the total time of impact (7, + .

During an oblique plastic impact friction forces between the projectile and
the target are called into play and an elongated crater is produced. The oblique
impact of a rigid sphere with a plastic solid has been analysed by Rickerby
& Macmillan (1980) on very much the same basis as the theory of normal
impact described above. The surface of the plastically deformed target is
assumed to remain flat outside the crater and the penetration of the sphere is
assumed to be resisted by a constant dynamic flow pressure py together with
a frictional traction upq4. Step-by-step calculations of the motion of the sphere,
leading to the volume of the crater and the loss of kinetic energy of the projec-
tile are well supported by experiment (Hutchings ez al , 1981)

Table 11.2
Pon = 2y (62
Metal Pd/Pm Pe/Pm ~T 3 i
Steel 1.28 1.09
Brass 1.32 1.10
Al alloy 1.36 1.10

Lead 1.58 1.11

Remar
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The simple theories of plastic impact outlined above are based on the assump-
tion that the maximum penetration §* is given approximately by 2*2/2R. For
this to be the case a*/R must be less than about 0.5 so that, by equation (11.42),
(AmV?%/pyR?) must be less than about 0.05. For a steel sphere striking a steel
surface this requires ¥ to be less than 100 m/s.

(c) High speed impact

At higher speeds, associated with bullets and, in the extreme, with
meteorites, the permanent deformation is much greater and the nature of the
impact phenomenon changes in ways which depend upon the mechanical
properties of both projectile and target. In addition, the energy dissipated
during the impact produces a local temperature rise which can appreciably
influence the material properties.

Johnson (1972) has suggested that the non-dimensional parameter (p¥ ?/Yy)
provides a useful guide for measuring the regime of behaviour for the impact
of metals. Table 11.3 is adapted from Johnson.

For illustrative purposes we shall consider the impact of a hard sphere of
density p,, impacting a massive block of density p and dynamic yield strength
Yy. Taking pg = 3Y4 the parameter (3m ¥V 2/pgR*) may then be written

() ()05

paR? p/\ Yy Y4

since p; /p is not going to differ much from unity compared with the variations
in (pV'2/Yy) which appear in Table 11.3. For most metals the ratio of elastic
modulus to yield stress £%/Yy is 100 or more, so that for purely elastic defor-
mation, by equation (11.39), (p¥V ?/Yy) is generally less than 107, When the
elastic limit is first exceeded the plastic zone is contained beneath the surface,
but fully plastic indentations are produced when the parameter (a£*/Y4R)

Table 11.3
Approx. velocity ¥V
Regime oV Yy (m/s)
Elastic <107¢ <0.1
Fully plastic indentation ~107% ~5
Limits of shallow indentation theory ~107! ~100

Extensive plastic flow, beginning of ~10 ~1000
hydrodynamic behaviour :
Hypervelocity impact ~10° ~10000
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exceeds about 30 (from Fig. 6.15), which corresponds to (p¥2/Y4) =~ 1073,
Between (pV'?/Yy) = 1073 and 107! the impact is reasonably described by the
quasi-static shallow indentation theory presented above, In the velocity range
discussed so far heating effects are negligible.

A further increase in impact speed leads to more extensive plastic deformation.
The plastic strains are large and shear heating reduces the dynamic yield strength
of the material. If the projectile is hard compared with the target the crater
diameter increases to more than that of the projectile and penetrations greater
than one diameter are obtained. This is the typical range of bullet speeds. When
(pV ?*/Y4) approaches unity the nature of the deformation changes and can no
longer be regarded as quasi-static. Under these circumstances the inertia stresses
associated with the local plastic deformation are comparable in magnitude with
the yield stress of the material which resists deformation. Inertia stresses become
important in the plastically deforming zone because of the very high rates of
strain which are occurring there. In the surrounding elastically deforming
material inertia effects remain small. The parameter (p ¥ ?/Yy) can be inter-
preted as the ratio of the ‘stagnation pressure’ of the moving projectile,
conceived as a fluid jet, to the strength of the target in shear. When this ratio
appreciably exceeds unity, the inertia of the deforming material becomes more
important than its yield strength, so that it behaves more like an ideal fluid
than a plastic solid. Theoretical analyses of high speed impact have been made
on this basis by Bjork and others (see Kornhauser, 1964) with moderate success.

We now write

=G -56)
Yy \YJ\ E Y\

Since E/Yy is greater than 100, it is clear that (pV %/Y4) will exceed unity and
fluid-like behaviour will develop before (V/cy) approaches unity and dynamic
effects occur in the bulk of the solid. However when (pV 2/Yy) reaches values
around 103, (V/co) approaches or exceeds unity, and the impact sets up intense
shock waves in the material. This is the region of hypervelocity impact normally
associated with meteorites and laser beams. The heat liberated may be sufficient
to melt or vaporise some of the projectile and target. A fine curtain of spray is
ejected from the crater at a speed in excess of the impact velocity. A larger
shallow crater with a pronounced lip is produced; if the projectile is ductile,

it mushrooms on impact and turns itself inside out. This behaviour has been
reproduced by Johnson e al. (1968) using a plasticine projectile and target,
whose low yield strength enables hypervelocity impact conditions to be obtained
at a velocity less than 1000 m/s. For further information on hypervelocity
impact the reader is referred to Kornhauser (1964).
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(d) Impact of viscoelastic solids

So far in this section we have described the inelastic behaviour of
materials in terms of plastic flow, characterised by a dynamic yield stress Y.
This is appropriate for metals but it is not a good model for polymeric materials,
including rubber, which are better described in terms of viscoelasticity. The
quasi-static impact of a projectile with a linear viscoelastic solid can be analysed
by the methods described briefly in §6.5.

Provided the energy dissipated at impact is a fairly small fraction « of the
kinetic energy of impact, a rough and ready estimate of the coefficient of
restitution may be made from measurements of the energy dissipated in a cyclic
strain experiment whose period is comparable with the time of impact. It is
usual to express the energy dissipation in cyclic strain by the loss tangent,
tan ¢, where ¢ is the phase angle between the cyclic stress and strain. The
loading and unloading during impact correspond roughly to a half cycle, where-
upon the coefficient of restitution is given by

e=(1—a)?=(1—-7tan¢)'"? (11.48)
To take a specific example, a Maxwell material (defined in §6.5) strained at

a frequency w has a loss tangent = 1/w7T, where T is the time constant of the
material. If 7 is the time of impact, we can take w as /7, whereupon
e=(1—-w)'"?~1—Ja=1—-4T7/T) (11.49)

provided that o is small, i.e. 7./T < 1. Since the impact is predominantly elastic,
T, can be taken to be the elastic impact time given by equation (11.24).

In order to carry out a more exact analysis of a rigid sphere of mass m striking
a viscoelastic half-space we have to make use of the results due to Ting (1966)
outlined in §6.5. A general incompressible linear viscoelastic material has a creep
compliance ®(¢) and a relaxation function ¥(¢). Different equations govern the
loading and unloading parts of the impact process. During loading (0 <z <z*)
the penetration §(¢) is related to the contact size a(¢) by the elastic equation:

8(t)=d*()IR (11.50)

The sphere retards under the action of the contact force P(¢), which from
equation (6.60) is given by

—mb(t) = P(t) = 3% ftﬂf(t —¢) ddTaf’(z’) dr' (11.51)
0

The variation of force and penetration with time during loading are obtained by
the simultaneous solution of equations (11.50) and (11.51). The maximum
contact size coincides with the maximum penetration when ¢ = t*,

During the rebound (¢ > t*), a(t) is decreasing, whereupon P(¢) and 8(¢)
depend upon the time #; during loading, at which the contact size a(¢;) was
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equal to the current contact size a(z). The penetration is given by

8(t) =a* (/R

¢ r d t’ ’ n d 2 " n !
—ft @(t—t)g;,[ftl Y(t —t )(?{a "} dt]at (11.52)

%

and the contact force by
5 =P = — [ " we—r) Loy ar (11.53)
—mo(t)=0(t)= — t—t) —a’(t)ds .
BRL dr'

The simultaneous solution to equations (11.52) and (11.53) gives the variation
of force and displacement during the rebound.

A solution in closed form to these equations has been obtained by Hunter
(1960) for the simple case of a Maxwell material in which the dissipation is small
(i.e. in which the time of impact T, is short compared with the relaxation time
T of the material). The coefficient of restitution was found to be given by

e~ 1—(4/9)(T./T) (11.54)

This result is very close to the approximate value obtained in equation (11.49)
from the energy loss in cyclic strain.

For more complex materials, or when 7,/T is no longer small, equations
(11.50)-(11.53) must be solved numerically step by step. This has been done
by Calvit (1967) using creep and relaxation functions estimated from cyclic
strain tests on perspex. Values of the coefficient of restitution and the time
of impact obtained by experiment were both found to be somewhat lower
than calculated. ‘

11.6 Travelling loads - high speed sliding and rolling

In the discussion of sliding and rolling contact in Chapters 7 and 8 it
was assumed that the velocity of the point of contact over the surface was
sufficiently slow for the deformation to be quasi-static. This is true for most
engineering purposes but, if the velocity approaches the speeds of elastic wave
propagation, the inertia of the material plays a part and modifies the contact
stresses. By analogy with a body moving through a fluid, we can identify three
regimes: ‘subsonic’, ‘transonic’ and ‘supersonic™f depending upon the ratio of
the velocity to the elastic wave speed. On the surface of an elastic solid the
behaviour is complicated by the fact that there are three wave speeds involved:
dilatational ¢, shear ¢, and surface c;. In this section we shall merely outline

1 Referred to by some authors as ‘subseismic’, etc.
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the main features of the dynamic effects for two-dimensional deformation
(plane strain) only.f

(a) Moving line load on an elastic half-space

The fundamental problem concerns the stresses and deformation set
up in an elastic half-space by a concentrated line force P per unit length moving
with velocity V over the surface. It is the dynamic equivalent of the static
problem considered in §2.2. An analysis using the complex variable method,
which covers the subsonic, transonic and supersonic regimes, has been made
by Cole & Huth (1958). They only investigate steady-state solutions, for which
an Eulerian coordinate system which moves with the load can be used. Mach
numbers M; and M, are defined as

My=V/e, and M,="V/c,
Under ‘subsonic’ conditions, when M; and M, < 1, we define:
Bi=(1—M>)"2, By=(1—M?)"?
and
N=(2 _M22)2 — 4818,
Cole & Huth show that the surface displacement iz, at a point distance x from
the load is given by
_ 21+ 0P M)}
2 nE
where C is a constant determined by the choice of the datum for displacements.

At low velocity, V= 0, 8; > 1 and N » 2(M*> — M,?) = —M,2/(1 —v). Thus
the expression for the surface displacement reduces to
2(1—v*)P
ﬁz=——(—)~ Inix|+C (11.56)
nE

Inlx|+C (11.55)

which is the static result obtained in equation (2.19). With an increase in
velocity the logarithmic shape of the surface remains unchanged, but the
magnitude of the displacement increases by the factor {8, M,%/(1 —v)N}
approaching an infinite value as V approaches zero. Reference to equation
(11.7) will confirm that this situation arises when the velocity ¥ coincides
with the speed c¢3 of Rayleigh surface waves. Then M, = a and M, = ac, /c;.
It is not surprising that an undulation which travels freely along the surface at
speed c3 increases without limit if forced by a load moving at the same speed.
Cole & Huth have obtained expressions for the stress components beneath

1 The three-dimensional problem of a moving point force on an elastic half-space
has been considered by Eason (1965).
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the surface as a function of the speed and elastic properties of the surface.
The distributions of normal stress 0,(x) along a line at depth z for M, = 0,
0.5 and 0.9 are shown in Fig. 11.13. The amplification of the stress with speed
as V approaches ¢ (M, = 0.93) is clearly shown, but for M, < 0.5 the differ-
ence from the static stress distribution is small. At high subsonic speeds the
normal acceleration i, leads to the stress g, becoming tensile at some distance
on either side of the load. In the subsonic regime the normal surface displace-
ments are symmetrical ahead of and behind the load so that no net work is
done by the moving load.

If we turn now to the completely ‘supersonic’ case where V is greater than
the largest of the wave speeds, then both M; and M, > 1. We now write

3,1 = (Ml2 - 1)”2, 5l2 = (M22 - 1)”2
and
N'=Q2—M")+ 4618;
The solution for the displacements and stresses is completely different from
the ‘subsonic’ case. The surface displacement may be written
0, x<0

i, = 21 +v)P B\ M;? (11.57)
—, x>0
E N

Ahead of the load the surface is undisturbed; behind the load, it is uniformly
depressed by an amount which depends upon the speed. The stresses in the
half-space are zero everywhere except along the lines of two ‘shock waves’
propagating from the point of application of the load. At the wave front the
stress is theoretically infinite, The shock waves travel at velocities ¢; and ¢,

Fig. 11.13. Normal stress 0, due to a line load P moving subsonically
(V < ¢;,) over the surface of an elastic half-space, for M, =0, 0.5 and
0.9.(v=35,My/M;=2))

x/z
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and hence make angles of cot (8}) and cot™ (83 ) with the surface as shown
in Fig. 11.14. This process is no longer conservative; the moving load does work
as it permanently depresses the surface and strain energy is steadily radiated away
by the shock waves.

The ‘transonic’ regime is complicated. In the small range of speed ¢3 <V <¢;,
N changes sign so that a downward force on the surface gives rise to an upward
displacement in the vicinity of the force. For ¢, < V'<¢;, NV is complex and
the stresses and deformation are a combination of a shock wave travelling at
speed ¢, and a ‘subsonic’ pattern associated with ¢;. For details consult Cole
& Huth (1958).

(b) High speed rolling or sliding of a cylinder

We shall now consider the stresses and deformation set up by along
rigid, frictionless cylinder which slides or rolls over the surface of an elastic half-
space with velocity ¥ perpendicular to its axis (Craggs & Roberts, 1967). We
have seen that in the ‘subsonic’ regime the deformation of the surface by
a moving line load is similar in shape to that produced by a stationary load;
the dynamic effect is to amplify the displacements by the speed factor
{8:M*/(1 —v)N} where 8,, M, and N are defined above. Thus the half-space
deforms as though its rigidity were reduced by the same factor. Now the contact
pressure distribution with the moving cylinder can be built up by the super-
position of concentrated loads, such that the resultant deformation in the
contact zone matches the profile of the cylinder. It follows that the pressure
distribution will be similar to the static (Hertz) case, and the contact width
will be increased by:

41+ v)PR B M,?
i N

1/2
V) = a(0) B M5H/(1 ~ o)V} = | } (1158)

Fig. 11.14. Line load moving supersonically (¥ > ¢;) over the surface
of an elastic half-space showing shock waves. (v = 0.25.)

lP /"
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For a given load P, therefore, the maximum contact pressure po(V') is reduced
by the same factor. It is clear from Fig. 11.13 that the subsurface stresses do not
follow a distribution which is similar to the static case. They may be deduced
from the results given by Craggs & Roberts (1967).

It is immediately apparent from equation (11.58) that the indentation of
the half-space by the cylinder becomes excessively large when V" approaches
the Rayleigh wave speed (V — 0). Above the Rayleigh wave speed (c3 < V<¢,)
the change in sign of the surface displacements makes it impossible for the
cylinder to make contact with the surface of the half-space along a continuous
arc. In fact no physically acceptable steady-state solution appears to exist in
the range c; < V' < ¢ (Craggs & Roberts, 1967).

In the ‘supersonic’ regime (¥ > ¢;), however, a simple solution can be found
from the results for a line load. The surface is undisturbed until it meets the
cylinder at x = —a. By equation (11.57) each increment of pressure p dx
depresses the surface by an amount

21 +w) BIM?
uz = '
N

Thus the pressure is proportional to the slope of the profile diz, /dx, which is

triangular. The surface leaves the cylinder at its lowest point at a depth
d given by

p dx

@ 21+v)P BiM?
PSS Sl 2 (11.59)
2R E N
as shown in Fig. 11.15. Trains of stress waves are propagated from the arc of

contact at velocities ¢; and ¢, .

Fig. 11.15. Frictionless cylinder rolling or sliding supersonically
(V > c) over the surface of an elastic half-space.
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Thermoelastic contact

12.1 Introduction

Classical elastic contact stress theory concerns bodies whose tempera-
ture is uniform. Variation in temperature within the bodies may, of itself, give
rise to thermal stresses but may also change the contact conditions through
thermal distortion of their surface profiles. For example if two non-conforming
bodies, in contact over a small area, are maintained at different temperatures,
heat will flow from the hot body to the cold one through the ‘constriction’
presented by their contact area. The gap between their surfaces where they do
not touch will act more or less as an insulator. The interface will develop an
intermediate temperature which will lie above that of the cold body, so that
thermal expansion will cause its profile to become more convex in the contact
region. Conversely the interface temperature will lie below that of the hot body,
so that thermal contraction will lead to a less convex or a concave profile. Only
if the material of the two bodies is similar, both elastically and thermally, will
the expansion of the one exactly match the contraction of the other; otherwise
the thermal distortion will lead to a change in the contact area and contact
pressure distribution. This problem will be examined in §4 below.

A somewhat different situation arises when heat is generated at or near to
the interface of bodies in contact. An obvious example of practical importance
is provided by frictional heating at sliding contacts. Also inelastic deformation
in rolling contact liberates heat beneath the surface which, with poorly conduct-
ing materials, can lead to severe thermal stresses. The passage of a heavy electric
current between non-conforming surfaces in contact leads to a high current
density and local heating at the contact constriction.

The analysis of a thermoelastic contact problem consists of three parts:

(i) the analysis of heat conduction to determine the temperature distribution
in the two contacting bodies; (ii) the analysis of the thermal expansion of the
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bodies, to determine the thermal distortion of their surface profiles; (iii) the
isothermal contact problem to find the contact stresses resulting from the
deformed profiles. In the simplest cases these three aspects are uncoupled and
the analysis can proceed in the above sequence. In many cases these aspects are
not independent. Where heat is generated by sliding friction, for example, the
distribution of heat liberated at the interface, which governs the temperature
distribution, is proportional to the distribution of contact pressure, which itself
depends on the thermoelastic distortion of the solids. Nevertheless our discus-
sion of thermoelastic contact will follow that sequence.

Readers of this book will have already appreciated the advantages, when
calculating elastic deformations, of representing bodies in'contact, whatever
their actual profile, by an elastic half-space bounded by a plane surface. The
same idealisation is also helpful in calculating the temperature distributions
in thermal problems. It may be justified in the same way; the temperature
gradients which give rise to thermal stress and distortion are large only in the
vicinity of the contact region where the actual surfaces of the bodies are
approximately plane. Widespread changes in the temperature of the bulk of
the bodies lead only to overall and approximately uniform expansion or
contraction which neither introduces thermal stresses nor significantly changes
the profile in the contact zone.

12.2  Temperature distributions in a conducting half-space
The theory of heat conduction in solids is not the concern of this book.

A full account of the theory and the analysis of most of the problems we require
are contained in the book by Carslaw & Jaeger (1959). Only the results will be
summarised here. We are interested in the flow of heat into a half-space through
a restricted area of the surface. We shall start with the temperature distribution
in the half-space due to a ‘point source’ of heat located at the surface. Since the
conduction equations are linear the temperature distribution due to any distri-
bution of heat supplied to the surface can be found by the superposition of the
solution for ‘point sources’ in the same way as elastic stress distributions due to
surface tractions were found from ‘point force’ solutions in Chapters 2 and 3.

The half-space is taken to be uniform with conductivity k, densit)/z p; specific
heat capacity ¢ and thermal diffusivity « (= k/pc).

(a) Instantaneous point source

A quantity of heat H is liberated instantaneously at time ¢ = 0 at the
origin O on the surface of a half-space, whose temperature is initially uniform
and equal to 8. The temperature at subsequent times at a point situated a radial
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distance R from O is given by (C & J §10.2)t

= —————— exp (—R?/4xt 12.1
O ety P ( ) (12.1)
At any point in the solid the temperature rises rapidly from 8, to a maximum
value when ¢ = R?/6x and slowly decays to 6, as the heat diffuses through the
solid.

(b) Instantaneous line source

The treatment of two-dimensional problems is facilitated by the use of
a line source in which H units of heat per unit length are instantaneously liber-
ated on the surface of a half-space along the y-axis. The temperature distribution
is cylindrical about the y-axis and at a distance R is given by (C & J §10.3)

f—0,= i —R?/4 12.2
o-(%)exp( Jact) (12.2)

(¢) Continuous point source

if heat is supplied to the half-space at O at a steady rate H, the tem-
perature at a distance R from O may be found by integrating (12.1) with respect
to time. It varies according to

8 — 0, = (H/27kR) erfc (R/4xt) (12.3)
where erfc (x) = 1 —erf (x) = 1 — (2/n'?) [ exp (—&?) d&.
After a sufficient time has elapsed, a steady state is reached in the neighbour-
hood of the source (i.e. where R < 4x¢) in which the temperature is given by

8 — 0o = H/2nkR (12.4)

The infinite temperature at R = 0 is a consequence of assuming that the heat
is introduced at a point.

(d) Distributed heat sources (C & J §10.5)

In reality heat is introduced into the surface of a solid over a finite
area. Assuming the remainder of the surface to be perfectly insulated, the
temperature within the solid may be found by the superposition of point or
line sources. If heat is supplied at a steady rate 4 per unit area, then equations
(12.3) and (12.4) can be used.

Suppose we wish to find the steady-state distribution of temperature
throughout the surface of a half-space when heat is supplied steadily to a small
area A of the surface. For a single source equation (12.4) applies, in which we

1 Carslaw & Jaeger (1959).
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shall denote by 8 temperature at a point on the surface distance » from the
source. The reader of this book will recognise that equation (12.4) is analogous
to equation (3.22b) which expresses the normal displacement #, of a point on
the surface of an elastic half-space due to a point force P acting at a distance
r, viz.

1= P

i, = -

‘ Tk r

This analogy may be used to determine the steady-state distribution of surface
temperature due to a distributed heat supply. For example, the temperature due
to uniform supply of heat to a circular area of radiusa is analogous to the
displacement produced by a uniform pressure. If (1 —»?)/E is replaced by
1k and p by h, the surface temperature distribution is given by equations (3.29).
The maximum temperature at the centre of the circle is

Bmax — 00 = ha/k (12.54)
and the average temperature over the heated circle is
Bmax — 00 = 8ha/3mk (12.55)

Similarly the temperature at the surface of a uniformly heated polygonal region
may be found from the results of §3.3.

The same analogy is useful when it is required to find the distribution of heat
supplied to a small area of the surface which would maintain a steady prescribed
temperature distribution in that area. For example, consider a half-space in which
a circular area of the surface, of radius , is maintained at a steady uniform tem-
perature 8. The temperature far away is 8, and the surface of the half-space
outside the circle is insulated. The analogous elastic problem concerns the
indentation of an elastic half-space by a rigid circular punch which imposes
a uniform displacement of the surface i, . The pressure under the punch is given
by equations (3.34) and (3.36), from which the required distribution of heat
supply may be deduced to be

2k(éc - 00)

(e) Moving heat sources (C & J §10.7)

In order to investigate the temperature produced by frictional heating
in sliding contact we need to examine the temperature produced in a half-space
by a heat source which moves on the surface. If we are dealing with the steady
state it is convenient to fix the heat source and imagine the half-space moving
beneath it with a steady velocity V parallel to the x-axis. The temperature field
is then a function of position but not of time.
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We shall examine the two-dimensional case of an infinitely long source of
heat parallel to the y-axis, uniformly distributed over the strip —a <x <a.
Referring to Fig. 12.1, the distributed source is regarded as an array of line
sources of strength /1 ds. The element of material at (x, z) at time ¢ was located
at (x — V', z) at an earlier instant (+ —¢"). The heat liberated by the line source
at s in the time interval dr' is 4 ds dr’, whereupon the steady temperature of an
element located instantaneously at x is found by the integration of equation
(12.2) from t = —oo to the current instant ¢ = 0.

6(x3 Z) ——60

h (x—s—Vt')Y +z* d
I I e B
21'rk e 4t t

(12.7)

The maximum temperature occurs on the surface (z = 0) for which equation
(12.7) can be written in the form

F(L,X) (12.8)

where L = (Va/2«) and X = (Vx/2x). The integrals have been evaluated by
Jaeger (1942). Surface temperature distributions are shown in Fig. 12.2(a).
The maximum temperature occurs towards the rear of the heated zone which
has had the longest exposure to heat. Maximum and average temperatures for
the heated zone are plotted against the speed parameter L in Fig. 12.2(b). The
parameter L, known as the Peclet number, may be interpreted as the ratio of
the speed of the surface to the rate of diffusion of heat into the solid. At large
values of L (>>5), the heat will diffuse only a short distance into the solid in
the time taken for the surface to move through the heated zone. The heat flow
will then be approximately perpendicular to the surface at all points. The

Fig. 12.1
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Fig. 12.2. Surface temperature rise due to a uniform moving line heat
source. (¢) Temperature distribution; (b) Maximum and average
temperatures as a function of speed. A - Band source (max); B - square
source (max); C - square source (mean).
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temperature of a surface point is then given by (C & J §2.9)

: 2h(kDV? ha (2 (2 2
0:__-_.——{ (—)(1+x)} , —as<x<a (12.9)

2%k \x\va
The mean temperature for a band source is then
- 4 ha 12
Hmean_60%3ﬁl/2 ;L (12.10)

Since equation (12.9) is based on one-dimensional heat flow into the solid, it
applies to a uniform source of any planform. Thus the mean temperature for
a square source of side 2z is also given by expression (12.10).

At very low speeds (L < 0.1) the temperature distribution becomes symmetri-
cal and similar to that for a stationary source. In the case of an infinitely long
band source no steady-state temperature is reached, but the square source
reaches a maximum temperature of 6, + 1.12iza/k at the centre and a mean
temperature in the heated zone of 8, + 0.946ha/k.

12.3 Steady thermoelastic distortion of a half-space

The equations which express the stresses and displacements in an elastic
half-space due to an arbitrary steady distribution of temperature have been
derived by various authors (e.g. Boley & Weiner, 1960). If the surface z = 0
is stress-free, then it can be shown that all parallel planes are stress-free, i.e.
0; = Ty; = Ty, = 0 throughout. The normal displacement at depth z is given
by (see Williams, 1961)

uz=—(1+V)af0 dz (12.11)

Williams has expressed the thermoelastic stresses and displacements in an
elastic half-space in terms of two harmonic functions and Barber (1975) has
used this formulation to derive some general results which are useful in thermo-
elastic contact problems:

(i) If heat is supplied at a rate h per unit area to the free surface of a half-space,
the surface distorts according to:

0%, o%u, .

PRI = ch(x,y) (12.122)
With circular symmetry this equation becomes

14/ di, .

o (r 3)= ch(r) (12.12b)

where ¢ = (1 + v)a/k is referred to as the “distortivity of the material.
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In a two-dimensional situation 38%i,/3y* = 0, so that equation (12.122)
implies that the curvature of the surface at any point is directly proportional
to the rate of heat flow at that point; convex when heat is flowing into the
surface and concave when it is flowing out. An insulated surface which is
initially flat will remain flat. Thus uniform heating of a half-space over a long
narrow strip will distort the surface such that it has a constant convex curva-
ture within the strip and has plane inclined surfaces outside the strip. This
general theorem is due to Dundurs (1974) (see also Barber, 1980a).

(ii) If the surface of a half-space, z = 0, is heated so that it has a distribution
of surface temperature 6(x, y), then the surface stress required to maintain the
surface flat, such that iz, = 0, is given by

0, = =3 {cE/(1—v*)}0(x, ) (12.13)
The application of an equal and opposite traction will free the surface from
traction and allow it to distort. It follows from equation (12.13) that the surface
displacements are those which would be caused by a surface pressure p(x, )
proportional to the distribution of surface temperature 8(x, y). In this way the
steady thermal distortion of a half-space can be found by the methods discussed
earlier in this book if the temperature distribution over the whole surface is
known. In most contact situations, however, it is usual to assume that no heat
is transferred across a non-contacting surface; the boundary conditions, therefore,
are more appropriately expressed in terms of heat flux rather than temperature.

We will now look at a number of particular cases.

(a) Point source of heat

The temperature distribution due to a continuous point source of heat
at point O on the surface is given by equation (12.4). The normal displacement
of a point on the surface distance » from O then follows from equation (12.11)

u,=—(1+v)a JH/{Z‘IT]C(I’ + 2212} 4z

71, = —(cH/2m) In (ro/7) (12.14)

where r is the position on the surface where iz, = 0. Since heat is being injected
continuously into the solid and the surface is assumed to be insulated except at
0, the expansion of the surface given by equation (12.14) increases without limit
as the datum for displacements is taken at an increasing distance from the source.

(b) Uniform heating of a circular region

When heat is supplied steadily over a small area of the surface, the
surface distortion can be found by superposition of the point source solutions
(Barber, 1971a). For example, heating a thin annulus of radius a gives rise to
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surface displacements:

i, =—(cH/2n) In (ro/a), r<a (12.150)
which is constant and
i, =~—(cH2n)In (ro/r), r>a (12.158)

which is the same as for a point source at the centre. From these results we may
easily proceed to uniform heating of a circular area, radius @, whence

—(cH/4m){21n (rofa) + (1 —7*/a®)}, r<a (12.16a)
{—(cH/zﬂ) In (ro/r), r>a (12.16b)

This distorted surface is shown in Fig. 12.3. Alternatively the results expressed

y4

by equations (12.16) could have been obtained directly by integrating equation
(12.12b) with & = H/ma® forr <a and h = 0 for r > a.

(c) Circular region at uniform temperature

To maintain a circular region of the surface at a uniform temperature
6. which is different from the temperature at a distance 8, requires a supply of
heat per unit area /(r) distributed according to equation (12.6). Hence substi-
tuting 2n#h(r) dr for H in equation (12.13) and integrating from » = 0 to
r = a gives (Barber, 1971b)

2 r
— ~cka(9c— o) [111(*0) —In {14+ (1 —7%/a*)"'?}
m a
21\1/2
=y o (1——2) ] r<a (12.172)
a
2
— = cka(0c. —00) In (ro/r), r>a (12.17b)
™

This distortion is also illustrated in Fig. 12.3.

(d) Moving heat source

We wish to find the thermal distortion of the surface due to the moving
heat source shown in Fig. 12.1. Barber has shown that a concentrated line
source H, moving with velocity ¥ causes a displacement of the surface at a point
distance ¢ ahead of the source given by

i, =—ckH/V) exp (—X?)[,(X?) (12.184)
where X = (V£/2x)'/? and I, is a modified Bessel function.t At all points
1 See Abramowitz & Stegun, Handbook of Mathematical Functions, Dover (1965)

for definitions and tabulation of modified Bessel functions /, and /|, and also for
integration of equation (12.18a).
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Fig. 12.3. Thermoelastic distortion of a half-space heated over a circular
area radius a. Curve A - uniform-heat input, eqs. (12.16); curve B -
uniform temperature, eqs. (12.17).
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behind the source the displacement is constant and given by

i1, =—2ckH/V (12.18b)
The thermal distortion due to a uniform rate of heating & over the strip
—a <x <a can be found by superposition. The displacement i, (x) of a surface
point is found by putting § = s —x in equation (12.18z) when £ is positive,

Fig. 12.4. Thermoelastic distortion of a half-space caused by a moving
heat source.
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i.e. when the point in question is ahead of the element / ds of the heat source,
and by using equation (12.18b) when £ is negative. In this way the distorted
surface shapes shown in Fig. 12.4 have been found as a function of the Peclet
number L defined above. At the leading edge of the heat source (x = ~a)

the thermal displacement varies with speed according to

i,(—a) = —2cha® e 2L {I,(2L) + I,(2L)}/L (12.19)
~ —2cha*(nL3) 712 (12.195)

for large values of L. At the trailing edge the displacement is
i1,(a) = —2cha®/L (12.19¢)

With increasing speed conduction ahead of the source becomes less effective
so that the displacement at the leading edge falls. At high speed the displacement
increases ailmost in proportion to the distance from the leading edge.

124  Contact between bodies at different temperatures
We shall consider first the situation in which a hot body, at temperature

01, is pressed into contact with a cooler one at temperature 6,, and will restrict
the discussion to frictionless surfaces and to a circular contact area of radius a.

If we assume, in the first instance, that the bodies make perfect thermal
contact at their interface and that each body is effectively a half-space, then
the heat conduction problem is straightforward. The temperature of the inter-
face . is uniform and the distribution of heat flux across the interface is given
by equation (12.6), i.e.
2k1(61 - ec) _ 2k, (ec - 62)

2_r2)1/2 - 2)1/2

h(r) =
n(a m(a® —r

from which it may be seen that 8, divides the difference in temperature between

the two bodies in the inverse proportion to their thermal conductivities k; and

k,. The total heat flux is thus

H = 4kya(8, — 0,) = 4k,a(0, — 0,) = 4ka(8, —0,) (12.20)
where k = kik, [(k1 + k).

The distortion of the surface of an elastic half-space by this distribution of

heat flux is given by equations (12.17). Since heat is flowing into the cooler
body it develops a bulge in which the displacements are proportional to the value
of its distortivity ¢, (= a, (1 + v,)/k, ), while the warmer body develops a hollow
of similar shape whose depth is proportional to ¢;. If ¢, = ¢, the bulge in the cooler
body will just fit the hollow in the warmer body and the contact stresses due
to the external load will not be influenced by the existence of the heat flux.
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This is clearly the case with identical materials. When the two materials are
different the heat flux will give rise to an additional (‘thermal’) contact
pressure such as to suppress the mismatch in the distorted profiles of the two
surfaces. The required pressure, acting over the circle r <a, is that which

(by equation (12.17)) would produce combined displacements of both surfaces
given by

1 .
()1 + (@), = 2—7r (c2 —c))H

x [In (ro/a) —In {14 (1 —r*/a*)¥?}

+ (1 —=r*/a*)'"?] (12.21)
It can be found by the methods of Chapter 3, with the result (Barber, 1973)
, HE* [n? a—(a"’—rz)”2
P =(c2—er) - [-8- Xz {a——————+ ERENT }] (12.22)

where ¥, (x) is Legendre’s chi functiont, which is defined by

at)=1 [

0

X 1 + s ds m=o x2m —1

T e e

1—s/s 2, Gm—1)?

This pressure distribution is plotted in Fig. 12.5. It corresponds to a total load
P'=(1/2n)(c; — c))HE*a = (2/m)k(cy — ¢1)(8, — 8,)E*a® (12.23)

The differential thermal expansion of the two bodies (12.21) has been annulled

by the application of the ‘thermal’ pressure distribution given by equation

(12.22). To find the net pressure we must add a Hertz contact pressure to

account for the isothermal elastic deformation, viz.:

p" () = QE*ajrR) {1 — (r/a)*}'/? (12.24)
and the corresponding load
P" = 4FE*a%[3R (12.25)

The total load P, thermal plus isothermal, is thus P’ + P”, which leads to the
relationship:

Bajag)* + (ajay)® = 1 (12.26)
where ao = (3RP/4E*)!/3 is the contact radius under isothermal (Hertz) condi-
tions and 8 = (3kR/2may)(cy — ¢1)(6; — 05). This relationship for §> 0 is
plotted on the right-hand side of Fig. 12.6. As expected an increase in tempera-

ture difference or in differential distortivity causes the relative curvature of the
two surfaces to increase and the contact area to decrease. In the case of two

+ L. Lewin, Dilogarithms and Associated Functions, MacDonald, London, 1958.
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Fig. 12.5. Contact of spherical bodies at different temperatures: body
of lower distortivity at higher temperature: A - pressure distribution
given by eq. (12.22); B - isothermal pressure distribution (Hertz).
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Fig. 12.6. Contact of spherical bodies at different temperatures. Exact
solutions with annulus of imperfect contact b <r <a. Broken line -
approximate solution (eq. (12.26)) assuming perfect contact throughout.
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nominally flat surfaces (R — =0) the isothermal component of pressure is zero.
Any slight departure from flatness will cause the heat transfer to be concen-
trated at the point of closest approach of the two surfaces. Consequent thermal
expansion will cause a circular area of intimate contact to develop and the
surrounding surfaces to separate, The size of the contact zone is then given by
equation (12.23).

The above analysis of the contact of two dissimilar bodies whose tempera-
tures are different is perfectly satisfactory provided that the product (¢, — ¢;) X
(6, — 8,) is positive. If the situation is changed, such that the body of higher
distortivity has the higher temperature, a new feature is introduced through the
change in sign of the thermal pressure p'(r). It may be seen from Fig. 12.5 that
this pressure distribution falls to zero very steeply asr —a compared with the
Hertz pressure. It can be shown that p'(r) always exceeds p”(r) in this region so
that, when a negative (tensile) thermal pressure is added to the isothermal
pressure, an annulus of fensile traction is found, however small the temperature
difference between the surfaces. This suggests that the surfaces would peel
apart at the edge, but it is not possible for them to do so and to still maintain
equilibrium with the applied load. It must be concluded that there is no solution
to the problem in the form posed above. Barber (1978) has shown that the
paradox arises from the thermal boundary conditions which assume ‘perfect
contact’ within the contact area, i.e. no discontinuity in temperature across the
interface, and perfect insulation outside the contact. The difficulty can be
removed by the introduction of an additional state of ‘imperfect contact’ in
which the displacements (elastic and thermal) are such that the surfaces just
touch and conduct some heat, but the contact pressure is zero. This state is
achieved by a jump in temperature across the interface. These boundary condi-
tions follow from the fact that, in reality, the change from perfect insulation
to perfect conduction will not be discontinuous when surfaces come into contact.
When the separation is sufficiently small heat can be transferred by radiation or
conduction through the intervening gas; further, contaminant films and the
inevitable roughness of real surfaces give rise to a thermal resistance at the
interface which might be expected to depend inversely upon the contact pressure.
The argument may be appreciated in its simplest form by reference to the one-
dimensional model shown in Fig. 12.7(a). A rod of length I, Young’s modulus
E and coefficient of thermal expansion « is placed between two rigid conducting
walls A and B, at temperatures 8, and g. The rod is attached to A and initially,
when 6,4 = 6, there is a small gap g = g, between the end of the rod and wall
B. If 8, israised above fp, in the steady state the rod will acquire the tempera-
ture 84 and the gap will close such that

g=go— oy —6p) (12.27)



Thermoelastic contact 388

This expression is only valid if g > 0, i.e. if

04 — g <goldd (12.28)
If the rod expands to make ‘perfect contact’ with the wall B, so that its tempera-
ture varies linearly from 6, to 85, its unrestrained expansion would be

Lad(64 —0g), but the actual expansion cannot exceed gq, so that a pressure
will develop on the end of the rod given by

p = 3E(84 —0p) = Ego/! (12.29)
The contact pressure must be positive so that
04 —05=2g0/cd (12.30)

There is thus a range of temperature difference
goldd < (64 —0p) < 2go/cd

in which no steady-state solution is possible. This is a similar state of affairs to

Fig. 12.7. Contact of an elastic rod between two rigid walls at different
temperatures (84 > 0p5). (¢) The system. (b) The thermal resistance
f(R) as a function of the gap g or the contact pressure p.
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that encountered in the contact of spheres discussed above. To resolve the
paradox we introduce a thermal resistance R(g) which varies continuously with
the gap, becoming very large as g becomes large. As we have seen negative gaps
cannot exist and we should replace the unrestrained ‘gap’ —g by a contact
pressure p = —Eg/l. The resistance R(p) will decrease as p increases. The
temperature of the free end of the rod is denoted by . so that, by equating
the heat flux along the rod to that across the gap, we get

Sk(84 —0c)/l=(6c—0p)IR
where S is the cross-sectional area of the rod. Thus

04—0c=(00,4—05)f(R) (12.31)
where f(R) = (1 + SkR/I)"!. This function is represented by curve I in Fig.
12.7(b). For large positive gaps R is large, hence f(R) approaches zero; at high
contact pressure (negative unrestrained gap), R is small and f(R) approaches
unity, but its precise form is unimportant.

The expression for the gap now becomes

g =280 —%0l(84 + 6c—20p)

=go—ad(64 —0p) + 3cd(04 —6c) (12.32)
Eliminating (64 — 0¢) from equations (12.31) and (12.32) we find
JR)=2+2g—go)/cd(04 —6B) (12.33)

This equation plots in Fig. 12.7(5) as a straight line which passes through the
point (gg, 2), and whose gradient is inversely proportional to the temperature
difference (64 — 05). Where the line intersects the curve of f(R) gives the
steady solution to the problem: it determines the gap g if the point of inter-
section is to the right of 0 and the pressure p if the point of intersection is to
the left of 0. Note that a point of intersection exists for a line of any gradient,
hence a solution can be found for all values of (84 —6p).

If we now make the resistance curve f(R) increasingly sensitive to the gap
and the contact pressure, as shown by curve II in Fig. 12.7, in the limit it takes
the form of a ‘step’, zero to the right of 0 and unity to the left. More signifi-
cantly it has a vertical segment between 0 and 1 when g = 0. An intersection
with the straight line given by equation (12.33) is still possible in the range
golad < (84 —0p) < 2go/ad, as indicated by the point P in Fig. 12.7(). Both
the gap and the contact pressure are zero at this point; the temperature of
the end of the rod 6. is intermediate between 64 and 0g, given by putting
g = 01in equation (12.32), and some heat flows across the interface. These are
the boundary conditions referred to by Barber (1978) as ‘imperfect contact’
and investigated further by Comninou & Dundurs (1979).
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Returning to the contact of spheres when the heat flow is such that § is
negative, the existence of tensile stresses as 7 = a when perfect contact is
assumed suggests that the contact area will be divided into a central region
(r < b) of perfect contact surrounded by an annulus (b <r < a) of imperfect
contact. Barber (1978) has analysed this situation with results which are shown
in Fig. 12.6 for negative values of 8. The variation in contact radius (a/a,)
given by equation (12.26), which assumes perfect contact throughout, is also
shown for comparison. With increasing (negative) temperature difference the
contact size grows as the thermal distortion makes the surfaces more conform-
ing. The exact variation is not very different from that predicted by equation
(12.26). The radius b of the circle of perfect contact, within which the contact
pressure is confined, also grows but more slowly. It is shown in Fig. 12.6. as
a ratio of the isothermal contact radius a¢ and also as a ratio of the actual
radius 2. The mean contact pressure falls, therefore, but not to the extent which
would be expected if perfect contact prevailed throughout. With perfect contact
the heat flux through the contact His proportional to the contact radius a, so
that the influence of thermal distortion on H is expressed by the approxi-
mate curve of a/a, against § given by equation (12.26) and shown dotted in
Fig. 12.6. The exact variation of heat flux is also shown. The effect of an
annulus of imperfect contact upon the heat flux is not large; the reduction in
conductivity of the interface is offset to some extent by the increase in the
size of the contact. The analogous problems of two-dimensional contact of
cylindrical bodies and of nominally flat wavy surfaces have been solved by
Comninou ef al. (1981) and Panek & Dundurs (1979).

When contact is made between a flat rigid punch and an elastic half-space
which is hotter than the punch, at first sight a hollow would be expected to form
in the half-space so that contact would be lost from the centre of the punch.
This cannot happen, however, since by equation (12.12b) the surface can only
become concave if heat is flowing from it, whereas no heat flows if there is no
contact. This is another situation, investigated by Barber (1982), in which a state
of imperfect contact exists, this time in a central region of the punch.

A basic feature of Fig. 12.6 calls for comment: for a given temperature
difference between the bodies, the heat transfer from the body of lower dis-
tortivity into that of higher distortivity (§ < 0) is greater than the heat transfer
in the opposite direction (§ > 0). This phenomenon has been called ‘thermal
rectification’ and is frequently observed when heat is transferred between
dissimilar solids in contact. The above theory, with modifications to allow for
the geometry of the experimental arrangement, has shown reasonable agreement
with measurements of heat transfer between rods having rounded ends in contact
(see Barber, 1971b).
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12.5 Frictional heating and thermoelastic instability

In the sliding contact of nominally flat surfaces heat is liberated by
friction at the interface at a rate

h=uVp (12.34)
where V is the sliding velocity and u the coefficient of friction. If the pressure
p is uniform then the heat conducted to the surfaces will be uniform and so will
the surface temperature. It has been frequently observed with brake blocks,
for example, that the stationary surface develops ‘hot spots’ where the tempera-
ture is much in excess of its expected mean value. This phenomenon was investi-
gated by Barber (1969). He showed that initial small departures from perfect
conformity concentrated the pressure and hence the frictional heating into
particular regions of the interface. These regions expanded above the level of
the surrounding surface and reduced the area of real contact, as described in
the previous section, thereby concentrating the contact and elevating the local
temperature still further. This process has come to be called ‘thermoelastic
instability’ and has been studied in detail by Burton (1980). If sliding continues
the expanded spots, where the pressure is concentrated, wear down until
contact occurs elsewhere. The new contact spots proceed to heat, expand and
carry the load; the old ones, relieved of load, cool, contract and separate, This
cyclic process has been frequently observed in the sliding contact of conforming
surfaces. The scale of the hot spots is large compared with the scale of surface
roughness and the time of the cycle is long compared with the time of asperity
interactions. The essential mechanism of thermoelastic instability may be
appreciated by the simple example considered below.

Two semi-infinite sliding solids having nominally flat surfaces, which are
pressed into contact with a mean pressure p, are shown in Fig. 12.8. To avoid
the transient nature of heat flow into a moving surface, the moving surface
will be taken to be perfectly flat, and non-conducting. The stationary solid
has a distortivity ¢ and its surface has a small initial undulation of amplitude
A and wavelength X. In the present example, where the mating surface is
non-conducting, it is immaterial whether the undulations are parallel or perpen-
dicular to the direction of sliding. The isothermal pressure required to flatten
this waviness is found in Chapter 13 (eq. (13.7)), to be

p" = (rE*A[X) cos (2mx/\) (12.35)
The steady thermal distortion of the surface is given by
d*a,
o =ch=cuVp(x) (12.36)

[t is clear that the initial sinusoidal undulation of wavelength X is going to result
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in a fluctuation of pressure at the same wavelength, which may be expressed by
p(x)=p + p* cos 2nx/N\) (12.37)
We are concerned here only with the fluctuating components of pressure and

heat flux which, when substituted in equation (12.36) and integrated, give the
thermal distortion of the surface to be

i, = —(cuVp*N\?/4m?) cos (2mx/\) (12.38)
The thermal pressure p'(x) required to press this wave flat can now be added to
the isothermal pressure given by (12.35) to obtain the relationship

E*

m
p* = Y (A + cuVp*\?/4n?)

whereupon

p* TE*A[ND
—_—=— 12.39
p 1—cuVE*N4n ( )

As the sliding velocity approaches a critical value ¥, given by
Ve = 4m/cpuE*X (12.40)
the fluctuations in pressure given by equation (12.39) increase rapidly in
magnitude (Fig. 12.8(c)).
When the fluctuation in pressure p* reaches the mean pressure p the surfaces

will separate in the hollows of the original undulations and the contact will
concentrate at the crests (Fig. 12.8(d)). A simple treatment of this situation

Fig. 12.8. Mechanism of thermoelastic instability. Thermal expansion
causes small initial pressure fluctuations to grow when the sliding speed
approaches a critical value V.. At high speed contact becomes discon-
tinuous which further increases the non-uniformity of pressure.
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may be carried out by assuming that the pressure in the contact patch,
—a < x < +a, is Hertzian, i.e. p(x) = po {1 — (x/a)* }'/2, where

Po = aE*[2R (12.41)

The curvature of 1/R of the distorted surface at x = 0 is given by
1/R = cuVpy + 4n>A/N2 (12.42a)
~cuVpo (12.42b)

if the initial undulation is small compared with the subsequent thermal distor-
tion. Thus equation (12.42) givest

4~ 2JcuVE* (12.43)

The transition from continuous to discontinuous contact at the interface takes
place when V approaches V; given by (12.40). Putting V' = ¥, in (12.43) then
gives an approximate expression for the critical contact size:
a.~ N2w (12.44)

The non-uniform pressure distribution leads directly to non-uniform heat
input and to a non-uniform distribution of surface temperature. The temperature
distribution can be found using the analogy with the surface displacements
produced by a pressure which is proportional to the heat flux at the surface.
Below the critical speed, while the surfaces are in continuous contact, the
pressure fluctuations are sinusoidal with an amplitude p* given by equation
(12.39). It follows that the fluctuations in heat flux and temperature will also

be sinusoidal with amplitudes #* and 6*. From the analogy mentioned above
we find

0* = Nn*[2nk = uVap*/2nk (12.45)

Above the critical speed, the surfaces are in discontinuous contact. The
surface displacements and contact pressures where a wavy surface is in discon-
tinuous contact with a plane are given in §13.2. From those results it may be
deduced that the temperature difference between the centre of a contact patch
and the centre of the trough is given by

UVP siny (1 —cosy 1+ cosy
{ ———— +1In (———— )}

8(0)—0(\/2)~ — — 12.46
() =0(2) Tk Y sin? ¥ sin ¥ ( )

where Y = wa/A.
The mechanism of thermoelastic instability may now be described with
reference to the above example (Figs. 12.8 and 12.9). In static contact any

waviness of the surfaces in contact will give rise to a non-uniform distribution
t A more exact treatment which matches the pressure and distortion throughout

the contact patch has been carried out by Burton & Nerlikar (1975) for multiple
contacts; for a single contact patch Barber (1976) findsa = 2.32/cuVE™*.
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of contact pressure. At low sliding speeds the variations in pressure from the
steady mean value are augmented by thermoelastic distortion according to
equation (12.38). When the velocity reaches a critical value ¥ given by
equation (12.40) the amplitude of the fluctuation increases very rapidly and,
if they have not already done so, the surfaces separate at the positions of the
initial hollows. Contact is discontinuous and the size of the contact patches shrinks
to a width about 1/3 of the original wavelength (eq. (12.44)). Further increase in
speed results in a stable decrease in the contact patch size according to equation
(12.43). The sudden rise in pressure and drop in contact area at the critical
speed are accompanied by a sharp rise in temperature fluctuation, as shown in
Fig. 12.9.

Real surfaces, of course, will have a spectrum of initial undulations. Equation
(12.39) suggests that the pressure variation grows in proportion to the ratio
A/X, i.e. to the slope of the undulations. The critical velocity ¥, however, is
independent of the amplitude and inversely proportional to the wavelength.
This suggests that long wavelength undulations will become unstable before the
short ones and thereby dominate the process. The size of the body imposes an
upper limit to the wavelength and hence a lower limit to the critical speed.
The undulations in real surfaces are two-dimensional having curvature in both
directions. Following the onset of instability, the same reasoning that led to

Fig. 12.9. Variation of the contact width ¢ and the amplitude of pressure
and temperature fluctuations with sliding speed.

8 1.6
i 2a
\
6 1.2
2aj\
p* |
i
4+ 0.8
204
p*/p H 2a/)
v
L | | 1
0 0.5 1.0 1.5 2.0

Sliding speed/critical speed V/V,



Frictional heating and thermoelastic instability 395

equation (12.43) gives the radius of a discrete circular contact area to bet
a~gulcuVE* (12.47)

Another way of expressing the influence of the size of the body is to say that,

if the nominal contact area has a diameter less than 24 given by (12.47), the

situation will be stable.

The above analysis simplifies the real situation in two important ways:

(i) the thermoelastic solutions employed refer to the steady state, whereas the
unstable variation in contact pressure and area is essentially a transient process,
and (ii) both surfaces will be conducting and deformable to a greater or lesser
extent. To investigate these effects Dow & Burton (1972) and Burton et al.
(1973) have studied the stability of small sinusoidal perturbations in pressure
between two extended sliding surfaces in continuous contact. The equation

of unsteady heat flow was used. They show first that a pair of identical
materials is very stable; however high the sliding speed an impractical value

of the coefficient of friction (>>2) would be required to cause instability.

When the two materials are different a thermal disturbance, comprising a fluctua-
tion in pressure and temperature, moves along the interface at a velocity which
is different from that of either surface. An appreciable difference in the thermal
conductivities of the two materials, however, leads to the disturbance being
effectively locked to the body of higher conductivity; most of the heat then
passes into that surface. In the limit we have the situation analysed above where
one surface is non-conducting. The critical velocity then approaches that given
by equation (12.40). Some heat is, in fact, conducted to the mating surface,

at a rate given by equation (12.10) which reduces the heat causing thermo-
elastic deformation of the more conducting surface and thereby increases the
critical velocity above that given by (12.40).

When the contact is discontinuous the analysis of transient thermoelasticity
becomes more difficult. Some basic cases of the distortion of a half-space due
to transient heating of a small area of the surface have been investigated by
Barber (1972) and Barber & Martin-Moran (1982). These results have been used
to investigate the transient shrinking of a circular contact area due to frictional
heating when the moving surface is an insulator. The stationary conducting
surface is assumed to have a slight crown so that before sliding begins there is
an initial contact area of radius a,. During sliding, in the steady state, the
contact area shrinks to a radius ... In this analysis the simplifying assumptions
‘which we have used previously are applied: the pressure distribution is
Hertzian and the curvature due to thermoelastic distortion is matched at the

t More exactly, for a single contact patch, Barber (1976) obtains 2 =1.28n/cuVE*
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origin only. With these assumptions a. is given by equation (12.47). Barber
(1980b) shows that the contact radius shrinks initially at a uniform rate
1.34x /a... Only in the later stages is 2. approached asymptotically, as shown
in Fig. 12.10.

Fig. 12.10. Transient thermoelastic variations of the radius of a circular
area in sliding contact from its initial value a4 to its steady-state value ¢...
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13

Rough surfaces

13.1 Real and apparent contact
It has been tacitly assumed so far in this book that the surfaces of

contacting bodies are topographically smooth; that the actual surfaces follow
precisely the gently curving nominal profiles discussed in Chapters 1 and 4.
In consequence contact between them is continuous within the nominal contact
area and absent outside it. In reality such circumstances are extremely rare.
Mica can be cleaved along atomic planes to give an atomically smooth surface
and two such surfaces have been used to obtain perfect contact under laboratory
conditions. The asperities on the surface of very compliant solids such as soft
rubber, if sufficiently small, may be squashed flat elastically by the contact
pressure, so that perfect contact is obtained throughout the nominal contact
area. In general, however, contact between solid surfaces is discontinuous and
the real area of contact is a small fraction of the nominal contact area. Nor is
it easy to flatten initially rough surfaces by plastic deformation of the asperities.
For example the serrations produced by a lathe tool in the nominally flat ends
of a ductile compression specimen will be crushed plastically by the hard flat
platens of the testing machine. They will behave like plastic wedges (§6.2(c))
and deform plastically at a contact pressure ~3Y where Y is the yield strength
of the material. The specimen as a whole will yield in bulk at a nominal
pressure of Y. Hence the maximum ratio of the real area of contact between
the platen and the specimen to the nominal area is about %. Strain hardening
of the crushed asperities will decrease this ratio further,

We are concerned in this chapter with the effect of surface roughness and
discontinuous contact on the results of conventional contact theory which
have been derived on the basis of smooth surface profiles in continuous contact.

Most real surfaces, for example those produced by grinding, are not regular:
the heights and the wavelengths of the surface asperities vary in a random way.
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A machined surface as produced by a lathe has a regular structure associated
with the depth of cut and feed rate, but the heights of the ridges will still
show some statistical variation. Most man-made surfaces such as those produced
by grinding or machining have a pronounced ‘lay’, which may be modelled to
a first approximation by one-dimensional roughness. It is not easy to produce
a wholly isotropic roughness. The usual procedure for experimental purposes
is to air-blast a metal surface with a cloud of fine particles, in the manner of
shot-peening, which gives rise to a randomly cratered surface, Before discussing
random rough surfaces, however, we shall consider the contact of regular wavy
surfaces.

The simplest model of a rough surface is a regular wavy surface which has
a sinusoidal profile. Provided that the amplitude A is small compared with the
wavelength A so that the deformation remains elastic, the contact of such
a surface with an elastic half-space can be analysed by the methods of Chapters
2 and 3.

13.2 Contact of regular wavy surfaces

(a) One-dimensional wavy surface

We will start by considering an elastic half-space subjected to a sinusoidal
surface traction

p =p* cos (2mx/\) (13.1)
which alternately pushes the surface down and pulls it up. The normal displace-
ments of the surface under this traction can be found by substituting (13.1)
into equation (2.25b), i.e.

dil, 2(1—v*) = p*cos(2ms/\) 4

— = 3

ox [ o xS
2(1 —p? = cos {2m(x — £)/\
X )”*f =N
nE e ¢
Expanding the numerator and integrating gives
dit, 2(1 —v%)

=— —— p*sin 2mx/\ 13.2
o ;7 (2mx/N) (13.2)

or
_ (1=

i, p* cos (2mx/A) + const. (13.3)

Not surprisingly the sinusoidal variation in traction produces a sinusoidal surface
of the same wavelength.
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The stresses within the solid may be found by superposition of the stresses
under a line load (eq. (2.23)) or, more directly, by equations (2.6) from the
stress function

&(x,z) = (p*[o®)(1 + az) e % cos ax (13.4)
where o = 2m/\. The maximum principal shear stress 7; occurs at a depth
z = N/2m beneath the points of maximum traction (x = nm). Its value is p*/e.
If an elastic half-space with a flat surface is brought into contact with an
elastic solid, whose nominally flat surface before loading has a one-dimensional

wave of small amplitude A and wavelength A, the gap between the surfaces may
be expressed byt (see Fig. 13.1(2))

h(x) = A{1—cos (2mx/N\)} (13.5)
If the surfaces are now pressed into contact by a mean pressure p sufficient to
compress the wave completely so that the surfaces are in continuous contact,

the pressure distribution can be found from the above results. The elastic dis-
placements of the surfaces are such that

()1 F (i1;)2 = & — h(x) (13.6)

where & is the approach of datum points in each body. Equation (13.3) shows
that this equation is satisfied by a pressure distribution of the form
p(x) =p + p* cos (2mx/\) (13.7)

where p* = 7E*A/\, since the uniform pressure p produces a uniform displace-
ment. For contact to be continuous the pressure must be positive everywhere
so that p = p* (see Fig. 13.1(d)).

If the mean pressure is less than p* there will not be continuous contact
between the two surfaces. They will make contact in parallel strips of width
2a located at the crests of the undulations and will separate in the troughs (see
Fig. 13.1(c)). Westergaard (1939) has shown that a pressure distribution:

2p cos (mx/\)

p(x) = ——————— {sin® (ma/\) — sin® (mx/N)}'? (13.8)
sin® (ma/\)
acting on an elastic half-space produces normal surface displacements:
_ (1—v*)pX
U(x)= —————cos2y +C, 0<|x|<a (13.92)
nE sin? y,

1 The same form of expression for the undeformed gap is obtained if both surfaces
have parallel undulations of the same wavelength, even though the undulations are
displaced in phase so that initial contact does not occur at the crests.
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1 —vH)pr
i (x)= (—————)E— [cos 2y + 2 sin ¥ (sin? Y — sin? y,)*"/?
ik sin? y,
sin ¢ + (sin? Y — sin? y,)*/?
—231'n2\1/a1n{ v+ sy va) }]+C,
sin Y,
a<|x|<MN2 | (13.95)

where p is the mean pressure, Y = nx/\, Y, = ma/\, and C is a constant deter-
mined by the datum chosen for displacements. The displacements of (13.92)
satisfy the contact condition (13.6) for |x | <z provided that

p = (E*A/N) sin? (ma/)\) (13.10)
and the displacements outside the contact strip (e < {x | <\/2) are such that
the gap remains positive. Noting from equation (13.7) that (nE*A/A) = p*,
equation (13.10) can be inverted to express the ratio of the ‘real’ to the
‘apparent’ area of contact, i.e.

2a/A = (2/n) sin™ (p/p*)"? (13.11)
This relationship is plotted in Fig. 13.2. When p € p*, then 22 €}, and the
compression of the crest of each wave should be independent of the other waves,

Fig. 13.1. Contact of a one-dimensional wavy surface with an elastic
half-space. (¢) Unloaded (p = 0), (») Complete contact (p = p*),
(¢) Partial contact (p < p*).
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so that the Hertz theory might be applied. The load P carried by each crest is
pA and the curvature 1/R of each crest is 47> A/A%. Substituting these values in
the Hertz equation (4.43) for line contact gives
2a/\ = (2/n)(B/p*)"? (13.12)

which is the limit of equation (13.11) for p < p*. It is shown dotted in Fig. 13.2.

At the other limit when p - p* only a small strip of width 2b (<)) remains
out of contact, where b = \/2 —a. An asymptotic expression for b can be found
by regarding the non-contact zone as a pressurised crack of length 25 in an
infinite solid. The contact pressure in the non-contact zone is, of course, zero,
but it can be thought of as the superposition of the pressure necessary to main-
tain the surfaces in contact, given by (13.7), and an equal negative pressure

acting on the surface of the ‘crack’ (a < x <X\ —a). Provided b € A\/2 the pressure
within the crack may be written

p(x") ~ 2n*(x']\*p* — (p* — b) (13.13)
where x' = x — \/2. Since the interface has no strength it will open until the

stress intensity factor at its ends falls to zero. The stress intensity factor at the
ends of a pressurised crack of length 2b is given by (see Paris & Sim, 1965)

Ky = (nb)™V2 Jb p(x){(B+x"H/(b—x")}? dx' (13.14)
—b

Fig. 13.2. Real area of contact of a one-dimensional wavy surface with
an elastic half-space. Solid line - exact, eq. (13.11); broken line -
asymptotic, egs. (13.12) and (13.15).
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Substituting p(x") from (13.13), integrating and equating K to zero give the
length of the no-contact zone to be

2b/\ = 2/m)(1 —p/p*)'" (13.15)
which is the limit of equation (13.11) asp = p*. It is also plotted in Fig. 13.2,
where it may be seen that the asymptotic equations (13.12) and (13.15) provide
close bounds on the exact result. As we shall see below, in the case of a two-

dimensional wavy surface, only the asymptotic results can be obtained in
closed form.

(b) Two-dimensional waviness
The gap between a flat surface and one which has a regular orthogonal
waviness can be expressed by

h(x,y) = Ay + Ay, — Ay cos (2rnx/Ny) — A, cos 2y /Az) (13.16)

The surfaces touch at the corners of a rectangular grid of mesh size A; X A}
the maximum gap, which coincides with a hollow in the surface, has a depth
2(A; + A,) at the mid-point of the rectangle. After compression the elastic
displacements, in the area over which the surfaces are in contact, are given

by substituting (13.16) in (13.6). The pressure to make contact over the whole
surface can now be found by superposition of the pressures necessary to com-
press each of the component waves taken separately. Thus by equation (13.7)
we have

p(x,y) =P + p cos (2mx/\y) + p¥ cos (2my/A;) (13.17)

where p¥ = mE*A /N and p} = TE*A, /A,. To maintain contact everywhere
p 2 p¥ + p;5. When the mean pressure is less than this value the interface will
comprise areas of contact and separation. At low pressures the contact area at
a crest will be elliptical and given by Hertz theory. At high pressures the smali
area of separation will also be elliptical and can be found by modelling it as
a pressurised crack. In between, the shape of the contact area will not be
elliptical and a closed-form solution seems improbable.

For an isotropic wavy surface A; = A, = A, A\; = A\, = \ whereupon we can
write equation (13.17) as

p(x,y)=p + 3p*{cos (2mx/\) + cos (2ay/\)} (13.13)
where p* = 2nE*A/\. The curvature of a peak in the surface 1/R = 472A/\?
and the load carried by each peak P = pA%. Substituting these values in the
Hertz equation (4.22) gives the ratio of the real (circular) area of contact to

the nominal (square) area:
2

Ta 3 p\?3
;\7 =7r(8_7;p_’;) (13.19)
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At the other extreme, when contact is nearly complete, the approximately
circular region of no-contact is regarded as a ‘penny-shaped crack’ subjected
to an internal pressure equal and opposite to that given by equation (13.18).
As before the radius of the crack b is found from the condition that the stress
intensity factor at the edge of the crack should be zero. In this way (see
Johnson et al,, 1985) it is found that

2
117 3 l—’
— = —(l——-—) (13.20)
A 2n p*

Both asymptotic results, given by equations (13.19) and (13.20) are plotted in
Fig. 13.3. In between, numerical solutions by Johnson et al. (1985) show how
the ratio of the real to apparent contact area varies with contact pressure. The
photographs of a rubber model in Fig. 13.4 illustrate the changing shape of the
contact area.

(c) Plastic crushing of a serrated surface
If a regular wavy surface, compressed by a rigid flat die, yields before
it is flattened elastically, the crests of the waves will be crushed plastically. It

Fig. 13.3. Real area of contact of a two-dimensional wavy surface with
an elastic half-space. Broken line - asymptotic, egs. (13.19) and (13.20);
solid circle - numerical solutions; open circle - experimental from
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has then been observed that it is difficult to flatten the surface by plastic
crushing of the asperities (see Greenwood & Rowe, 1965). This behaviour has
been modelled by Childs (1973) by representing the rough surface by a regular
array of wedge-shaped serrations, which is indented by a flat rigid punch whose
width L is much greater than the pitch of the serrations, as shown in Fig.
13.5(a). When the punch is loaded by a normal force P the tips of the serrations
are crushed, each with a contact width / Taking the material of the serrated
surface to be rigid-perfectly-plastic, the serrations will first crush according to
the slip-line field of Fig. 6.8(d) from which the asperity pressure p can be
calculated. With increasing load, this mode of deformation will continue until
the deformation fields of adjacent serrations begin to overlap, i.e. when point
Cin Fig. 6.8(b) reaches the trough between two serrations. For a semi-wedge-
angle a = 65° this point is reached when I/A = 0.36. Further deformation is
now constrained by the interference between adjacent serrations. Slip-line fields
have been constructed by Childs (1973) for this situation which results in

a sharp increase in asperity pressure as //A = 1.0. This configuration may be
visualised as a back extrusion, where the material displaced by the downward
motion of the punch has to be extruded upwards through the small remaining

Fig. 13.4. Area of contact between a perspex flat and a rubber block
with an isotropic wavy surface p/p*: (¢) 0.024, () 0.080, (¢) 0.139,
(d) 0.345, () 0.550, (f) 0.759.
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gap between the contact areas. The mean pressure on the punch p is given by:

p_P pl
Pt P 13.21
2% 2kL 2k ( )

When p reaches the limiting pressure for plastic indentation of a flat punch
(5.14k), the punch will indent the block as a whole and no further deformation
of the asperities will take place. In the example shown in Fig. 13.5(b) (a = 65°),
this limit is reached when I/A = 0.81. In practice the asperities strain-harden
relative to the bulk so that the maximum value of //X is less than 0.81. Thus,
under purely normal loading of an extended surface, it is not possible to crush
the asperities flat by purely plastic deformation. We have seen that this arises

Fig. 13.5. Crushing a regular serrated plastic surface by a rigid flat
punch (&= 65°). Bulk indentation by the punch will occur when
pl/N=p=P/L =514k, ie. when /A= 0.81.
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from the constraint imposed by adjacent asperities. If, however, the block

as a whole is extending plastically parallel to the surface of the punch (neglecting
friction) this constraint is removed and the asperities are flattened by small
punch pressures. This state of affairs is common at the surface of a die in a metal
forming operation. It also occurs if the block in Fig. 13.5(2) is not as wide as

the punch so that bulk plastic flow takes place when p exceeds 2k. Finally,
frictional shearing of the serrations by a tangential force applied to the block
facilitates the growth of the real/apparent contact area //X. The mode of plastic
deformation of the serrations is then similar to that of the wedge shown in

Fig. 7.15.

13.3 Characteristics of random rough surfaces
We will now discuss briefly the topographical characteristics of random

rough surfaces which are relevant to their behaviour when pressed into contact.

Surface texture is most commonly measured by a profilometer which draws
a stylus over a sample length of the surface of the component and reproduces
a magnified trace of the surface profile as shown in Fig. 13.6. Note that the
trace is a much distorted image of the actual profile through using a larger
magnification in the normal than in the tangential direction. Modern profilo-
meters digitise the trace at a suitable sampling interval and couple the output
to a computer in order to extract statistical information from the data. First,
a datum or centre-line is established by finding the straight line (or circular arc
in the case of round components) from which the mean square deviation is
a minimum. This implies that the area of the trace above the datum is equal to
that below it. The average roughness is now defined by

1 L
RaE—J. lz| dx (13.22)
LJo
where z(x) is the height of the surface above the datum and L is the sampling
length. A less common but statistically more meaningful measure of average
roughness is the ‘root-mean-square’ or standard deviation ¢ of the height of the

Fig. 13.6. Profilometer trace.

Mean height.
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surface from the centre-line, i.e.
1 rL
0% = —f 22 dx (13.23)

The relationship between ¢ and R}, depends, to some extent, on the nature of
the surface; for a regular sinusoidal profile ¢ = (7/2 v/2)R,, for a Gaussian
random profile o = (7/2)!"?R,.

The R, value by itself gives no information about the shape of the surface
profile, i.e. about the distribution of the deviations from the mean. The first
attempt to do this was by the so-called bearing area curve (Abbott & Firestone,
1933). This curve expresses, as a function of height z, the fraction of the
nominal area lying within the surface contour at elevation z. It would be obtained
from a profile trace, such as Fig. 13.6, by drawing lines parallel to the datum at
varying heights z and measuring the fraction of the length of the line at each
height which lies within the profile (see Fig. 13.7). We note in passing that the
‘bearing area curve’ does not give the true bearing area when the rough surface
is in contact with a smooth flat one. It implies that the material in the area of
interpenetration vanishes, no account being taken of contact deformation. The
true bearing or contact area will be discussed in §4.

An alternative approach to the bearing area curve is through elementary
statistics. If we denote by ¢(z) the probability that the height of a particular
point in the surface will lie between z and z + dz, then the probability that the
height of a point on the surface is greater than z is given by the cumulative
probability function: ®(z) = [;"¢(z") dz’. This yields an S-shaped curve identical
with the bearing area curve.

It has been found that many real surfaces, notably freshly ground surfaces,
exhibit a height distribution which is close to the ‘normal’ or Gaussian probability

Fig. 13.7. Height distribution ¢(z) and ‘bearing area’ curve given by the
cumulative height distribution ®(z).
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function:

P#(2) = 7' (2m) "2 exp (—z?/20%) (13.24)
where ¢ is the standard (r.m.s.) deviation from the mean height. The cumulative
probability

z{o

d(z)=%— —i~f exp (—z*/20%) d(z'/0) (13.25)
(21.‘,)1/2 0
is to be found in any statistical tables. When plotted on normal probability
graph paper, data which follow the normal or Gaussian distribution will fall

on a straight line whose gradient gives a measure of the standard deviation

o, as shown by the ground surface in Fig. 13.8(z). It is convenient from a mathe-
matical point of view to use the normal probability function in the analysis of
randomly rough surfaces, but it must be kept in mind that few real surfaces

are Gaussian. For example, a ground surface which is subsequently polished so
that the tips of the higher asperities are removed (Fig. 13.8(d)) departs markedly
from the straight line in the upper height range. A lathe-turned surface is far
from random; its peaks are nearly all the same height and its troughs the same
depth. It appears on probability paper as shown in Fig. 13.8(c).

So far we have discussed only variations in height of the surface; spatial
variations must also be considered. There are several ways in which the spatial
variation can be specified. We shall use the root-mean-square slope o, and
r.m.s. curvature g, defined as follows.t

A sample length L of the surface is traversed by a stylus profilometer and
the height z is sampled at discrete intervals of length . If z; _;, z; and z; 4 are
three consecutive heights, the slope is defined by

m=(z;+1~z;)/h (13.26)
and the cutvature by
K =(Zj+1_‘2Zj+Zj__1)/h2 (1327)
The r.m.s. slope and curvature are then found from
i=n
o> =(1/n) ¥ m? (13.28)
i=1
i=n
02 =(1/n) Y K2 (13.29)
i=1

where n = L/h is the total number of heights sampled.

1 For alternative specifications of a random rough surface in terms of the auto-
correlation function oz the spectral density, the interested reader is referred to the
book: Rough Surfaces, Ed. T. R. Thomas (1982).
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We should like to think of the parameters g, g, and g, as properties of the
surface which they describe. Unfortunately their values in practice depend upon
both the sample length L and the sampling interval # used in their measurement.
If we think of a random rough surface as having a continuous spectrum of wave-
lengths, neither wavelengths which are longer than the sample length nor those
which are shorter than the sampling interval will be recorded faithfully by
a profilometer. A practical upper limit for the sample length is imposed by the
size of the specimen and a lower limit to the meaningful sampling interval by
the radius of the profilometer stylus. The mean square roughness ¢ is virtually
independent of the sampling interval » provided that 4 is small compared with
the sample length L. The parameters o, and o, , however, are very sensitive to
sampling interval: their values tend to increase without limit as / is made smaller,
and shorter and shorter wavelengths are included. This uncomfortable fact has
led to the concept of functional filtering whereby both the sample length and
sampling interval are chosen to be appropriate to the particular application
under consideration. We shall return to this point in §5.

When rough surfaces are pressed into contact they touch at the high spots
of the two surfaces, which deform to bring more spots into contact. We shall
see in the next section that, to quantify this behaviour, we need to know the
standard deviation of the asperity heights oy, the mean curvature of their
summits K5, and the asperity density ng, i.e. the number of asperities per unit
area of the surface. These quantities have to be deduced from the information
contained in a profilometer trace. It must be kept in mind that a maximum in
the profilometer trace, referred to as a ‘peak’, does not necessarily correspond
to a true maximum in the surface, referred to as a ‘summit’, since the trace
is only a one-dimensional section of a two-dimensional surface. On the basis
of random process theory, following the work of Longuet-Higgins (19572 & b),
Nayak (1971) and Whitehouse & Phillips (1978, 1982), Greenwood (1984) has
investigated the relationship between the summit properties of interest and the
properties of a profilometer trace as influenced by sampling interval, with the
following conclusions:

(i) For an isotropic surface having a Gaussian height distribution with
standard deviation o, the distribution of summit heights is very nearly
Gaussian with a standard deviation

0,~ O (13.30)
The mean height of the summits lies between 0.50 and 1.50 above the
mean level of the surface. The same result is true for peak heights in

a profilometer trace, as shown by the data in Fig. 13.8(a), where the

fact that the data for the peak heights and summit heights lie approxi-
mately parallel to those for the surface as a whole, shows that they have
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nearly the same standard deviation. A peak in the profilometer trace is
identified when, of three adjacent sample heights, z; 4, z; and z; +1,
the middle one z; is greater than both the outer two.

(i) The mean summit curvature is of the same order as the root-mean-
square curvature of the surface, i.e.,

Ks™ 0y (13.31)

(iii) By identifying peaks in the profile trace as explained above, the number
of peaks per unit length of trace np can be counted. If the wavy surface
were regular, as discussed in §2(b), the number of summits per unit
area ng would be np2. Nayak (1971) showed that, for a random iso-
tropic surface, with a vanishingly small sampling interval, ny = 1.209np2.
Over a wide range of finite sampling intervals Greenwood (1984)
showed that

N~ 1.8n,’° (13.32)
Although the sampling interval has only a second-order effect on the
relationships between summit and profile properties expressed in equations

(13.31) and (13.32), it must be emphasised that the profile properties them-
selves 0, and n, are both very sensitive to the size of the sampling interval.

13.4  Contact of nominally flat rough surfaces

We have seen throughout this book that, in the frictionless contact of
elastic solids, the contact stresses depend only upon the relative profile of their
two surfaces, i.e. upon the shape of the gap between them before loading. The
system may then be replaced, without loss of generality, by a flat, rigid surface
in contact with a body having an effective modulus £% and a profile which
results in the same undeformed gap between the surfaces. We are concerned
here with the contact of two nominally flat surfaces, which have r.m.s. rough-
nesses ¢ and o, respectively. However we shall consider the contact of a rigid
flat plane with a deformable surface of equivalent roughness o = (0;% + 0,2)*/2.

The situation is illustrated in Fig. 13.9. We shall follow the analysis of

Greenwood & Williamson (1966). The mean level of the surface is taken as

Fig. 13.9. Contact of a randomly rough surface with a smooth flat.
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datum and the distance between the datum and the rigid flat is referred to as
the separation. Fig. 13.9 shows the peaks in a profile trace but, from the contact
point of view we are interested in the summits of the surface asperities. We

shall denote the summit heights by z,, having a mean z and a distribution
function ¢(zg), which expresses the probability of finding a summit of height

zg lying in the interval zg to zg + dzg. If there are NV summits in the nominal
surface area Ag, the number of summits in contact at a separation d is given by

n=Nf°o #zs) dzg (13.33)
d

For simplicity we shall follow Greenwood & Williamson (1966) and assume that
the asperity summits are spherical with a constant curvature k. If a summit
height exceeds the separation it will be compressed by § = zg — d and make
contact with the flat in a small circular area of radius . The ith summit, there-
fore, has a contact area

A;=mal =f(5)) (13.34)
and the force required to compress it may be written
P;=g(5;) (13.35)

where the functions f(8) and g(8) depend upon the material properties of the
surfaces. If the deformation is entirely within the elastic limit, from the Hertz
equation (4.23),

f(8) =md/xs (13.36)
and

g(8) = (3)E*ks 1?8 (13.37)
For perfectly plastic compression of an asperity, if ‘piling-up’ or ‘sinking in’
is neglected (see §6.3):

f(8) =~ 218 [k (13.38)
and

g(d)~pA=~6nYd/Kg (13.39)
where Y is the yield strength of the softer surface. Halling & Nuri (1975) have
proposed alternative functions f(8) and g(8) appropriate to a material which
displays power-law strain hardening.

To find the total real area of contact 4 and the total nominal pressure

P (= P/Ay) we must sum equations (13.34) and (13.35) for all the asperities
in contact, i.e. those whose height zg exceeds the separation d. Thus

A =waf(zs—d)¢(zs) dzg (13.40)
d
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and
Pdg=P=N f £z — d)olzs) dzg (13.41)
d

Greenwood & Williamson (1966) have evaluated these integrals numerically for
elastically deforming asperities (eq. (13.36) and (13.37)) and a Gaussian distri-
bution of asperity heights.

The contact area (non-dimensionalised) is plotted against the non-dimensional
load in Fig. 13.10 from which it may be seen that the contact area is approxi-
mately proportional to the load over three decades of load. The separation may
be normalised by subtracting the mean summit height and dividing by the
standard deviation, i.e. by putting { = (d — Z;)/0,. The theory is based on the
assumption that the deformation of each asperity is independent of its neighbours.
This will become increasingly in error when the real contact area is no longer
small compared with the nominal area, at normalised separations less than 0.5,
say. At the other end of the scale, the probability of contact becomes negligible
if the normalised separation exceeds about 3.0.

The significant features of Greenwood & Williamson’s results may be demon-
strated without recourse to numerical analysis by using an exponential rather

Fig. 13.10. Real area of contact of a randomly rough elastic surface
with a smooth flat: A — Gaussian distribution of asperity heights
(Greenwood & Williamson, 1966); B — exponential distribution (eq.

(13.46)).
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than a Gaussian distribution function, i.e. by putting

#(z) = (C/os) exp (—zslo5), 25> 0 (13.42)
where C is an arbitrary constant, The number of asperities in contact, given by
(13.33), then becomes

n=(CN/os) f " exp (—z4/05) dz
d

= N exp (—d/oy) f " exp (—=8/03) d(8/0y)
0

= CN exp (—d/os) (13.43)

Similarly equation (13.40) for the contact area becomes

A= (CN/oy) f " F(5) exp (—z/0g) dzg
d

~ W exp (—d/oy) f " £(8105) exp (—8/0y) d(5/05)
0

=nl; (13.44)
and equation (13.41) for the load becomes

P=CN exp (—dJoy) f " 6(8/04) exp (—5/0y) d(8/ay)
0

=nl, (13.45)

The definite integrals in equations (13.44) and (13.45), denoted by Ir and /,
respectively, are constants independent of the separation d. Thus the real contact
area A and the mean pressure p are both proportional to the number of
asperities in contact 1, and are hence proportional to each other irrespective

of the mode of deformation of the asperities expressed by f and g. These results
imply that, although the size of each particular contact spot grows as the
separation is decreased, the number of spots brought into contact also increases
at a rate such that the average size @ remains constant.

If the deformation of the asperities is elastic f(8/0s) and g(8/0;s) are given by
equations (13.36) and (13.37) which, when substituted in (13.44) and (13.45),
give I = nog/ks and I, = w2 E*gd/? /2. Thus the ratio of the real to apparent
contact area is given by

A AP I

— _ - __1n -1/2( =
— =— —="p=7"%(0s F* 13.46
P4 L (osks) " *(B/E*) (13.46)

where p is the nominal contact pressure P/4,. In this case, with an exponential
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probability function, the number of asperities in contact and the real area of
contact are both exactly proportional to the load. The comparison with the
more realistic Gaussian distribution is shown in Fig. 13.10. _

It is instructive to compare the ratio of real to apparent area of contact for
a random rough surface, given by equation (13.46), with that for a regular
wavy surface. Now equation (13.19) for the real area of contact of a flat surface
with a regular wavy surface of amplitude A may be written

Ay = 0.762(A k) V2 (p/E*)? (13.47)

Recognising that the standard deviation ¢ of a random rough surface is a com-
parable quantity to the amplitude A of a regular wavy surface, we see that
equations (13.46) and (13.47) involve the same dimensionless variables.
Whereas the regular surface deforms such that the real area of contact grows
as the (load)?/3, the contact area with a randomly rough surface grows in direct
proportion with the load. This conclusion is consistent with Amontons’ law
of friction. Frictional forces must be developed at the points of real contact
and we would expect, therefore, that the total force of friction would be
proportional to the real area of contact, which we have seen is in direct propor-
tion to the load, Further experimental support for the conclusions presented
above is provided by measurements of thermal and electrical conductance
between conducting bodies across a rough interface. The conductance of a single
circular contact area is given by 2Ka, where K is the bulk conductivity of the
solids, The total conductance of the interface therefore is 2KZa = 2Kna. Now
we have seen that the mean contact size @ remains approximately constant while
the number of contact spots # increases in direct proportion to the load, thereby
ensuring that the total conductance increases in proportion to the load. The law
of friction demands that the total area (Za?) increases in proportion to the
nominal contact pressure (load); the conductance experiments demand that
Za increases in direct proportion to load. The only simple way in which both
these conditions can be fulfilled simultaneously is by the mean contact size &
remaining constant and the number of real contact spots n increasing in propor-
tion to the load.

A further consequence of the area of real contact being proportional to the
load is that the real mean contact pressure is nearly constant. For an exponential
probability function and elastically deforming asperities,

Pr =£ = L = 0.56E*(0osk)""? (13.48)
A4 If
For a Gaussian height distribution p; varies from 0.3 to 0.4E*(ggk)"/? over the
relevant range of loading. Since each asperity in the model is spherical the onset
of plastic yield is given by equation (6.9), i.e. when p = 1.1Y =~ 0.39H, where
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H is the hardness of the material and Y its yield stress. Thus the average contact
pressure will be sufficient to cause yield if p, = 0.39H, that is if

Y =(E*/H)(osks)? > C (13.49)
where C is a constant which depends somewhat on the height distribution but
has a value close to unity The non-dimensional parameter { is known as the
‘plasticity index’. It describes the deformation properties of a rough surface.
If its value is appreciably less than unity the deformation of the asperities when
in contact with a flat surface will be entirely elastic; if the value exceeds unity
the deformation will be predominantly plastic.

The theory outlined above assumes that the asperities have a constant curva-
ture k¢ whereas, in reality, the summit curvatures will have a random variation.
As an approximation we can use the mean summit curvature K in equations
(13.44)~(13.49) which, as we saw in the last section (eq. (13.31)), is approxi-
mately equal to the r.m.s. curvature of the surface found from a profilometer
trace. This procedure is not strictly correct because the summit curvature is
not independent of the summit height, but it has been justified by Onions
& Archard (1973).

An alternative definition of the plasticity index has been proposed by Mikic
(1974). We saw in §6.3 that the extent of plastic deformation during the inden-
tation of an elastic-plastic surface by a rigid wedge or cone was governed by
the non-dimensional parameter (E* tan /Y") where 8 is the angle of inclination
of the face of the wedge or cone to the surface of the solid and Y is the yield
stress. Thus, when two rough surfaces are in contact we might expect the degree
of plastic deformation of the asperities to be proportional to the slope of the
asperities. Remembering that yield stress is proportional to hardness, Mikic
proposed a plasticity index defined by

y = E*o,, [H (13.50)
where oy, is the r.m.s. slope of the surface which is obtained directly from
a profile trace. This definition avoids the difficulty of two statistical quantities

which are not independent, but does not escape the dependence of o, on the
sampling interval used to measure it.

13.5 Elastic contact of rough curved surfaces

We come now to the main question posed in this chapter: how are the
elastic contact stresses and deformation between curved surfaces in contact,
which form the main subject of this book, influenced by surface roughness?
The qualitative behaviour is clear from what has been said already. There are
two scales of size in the problem: (i) the bulk (nominal) contact dimensions
and elastic compression which would be calculated by the Hertz theory for the
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‘smooth’ mean profiles of the two surfaces and (ii) the height and spatial distri-
bution of the asperities. For the situation to be amenable to quantitative analysis
these two scales of size should be very different. In other words, there should
be many asperities lying within the nominal contact area. When the two bodies
are pressed together true contact occurs only at the tips of the asperities, which
are compressed in the manner discussed in §4. At any point in the nominal
contact area the nominal pressure increases with overall load and the real contact
area increases in proportion; the average real contact pressure remains constant
at a value given by equation (13.48) for elastically deforming asperities. Points
of real contact with the tips of the higher asperities will be found outside the
nominal contact area, just as a rough seabed results in a ragged coastline with
fjords and off-shore islands. The asperities act like a compliant layer on the
surface of the body, so that contact is extended over a larger area than it would
be if the surfaces were smooth and, in consequence, the contact pressure for
a given load will be reduced. Quantitative analysis of these effects, using the
Greenwood & Williamson model of a rough surface (spherically tipped elastic
asperities of constant curvature), has been applied to the point contact of spheres
by Greenwood & Tripp (1967) and Mikic (1974) and to the line contact of
cylinders by Lo (1969). We shall consider the axi-symmetric case which can be
simplified to the contact of a smooth sphere of radius R with a nominally flat
rough surface having a standard distribution of summit heights ¢, where R and
o, are related to the radii and roughnesses of the two surfaces by: 1/R = 1/R; +
1/R, and 02 = 04, + 0g,°.

Referring to Fig. 13.11, a datum is taken at the mean level of the rough
surface. The profile of the undeformed sphere relative to the datum is given by

y=yo— 2R
At any radius the combined normal displacement of both surfaces is made up of

a bulk displacement wy, and an asperity displacement w,. The ‘separation’
d between the two surfaces contains only the bulk deformation, i.e.

d(r) = wy (r) = y(r) = —yo + ("*/2R) + wy, () (13.51)
The asperity displacement w, = z;— d, where z; is the height of the asperity
summit above the datum. If now we assume that the asperities deform elastically,

the function g(w,) is given by equation (13.37) with § replaced by w,. Then, by
substitution in equation (13.41), the effective pressure at radius r is found to be

p(r) = (4nsE*/3 172 f T ze— dOF20(z,) dz, (13.52)
d

where 7 is the asperity density N/4,. The bulk compression wy, which is con-
tained in the expression for separation (13.51), is related to the effective
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pressure p(r) by the equations for the axi-symmetric deformation of an elastic
half-space presented in §3.8. In the notation of the present section equation
(3.98a) for the normal displacement of an axi-symmetric distribution of pressure
p(r) can be written:
2] Y (HK(k) d (13.53
Wpir) = — — pi t .
b nE* 0 t+r P ) )

where K is the complete elliptic integral of the first kind with argument
k= 2(rt)"?/(r + ). Equations (13.51), (13.52) and (13.53) have been solved

by Greenwood & Tripp (1967) for a Gaussian distribution of asperity heights,

Fig. 13.11. Contact of a smooth elastic sphere with a nominally flat
randomly rough surface: solid line — effective pressure distribution
p(r); broken line - Hertz pressure (smooth surfaces). Effective radius
a* defined by eq. (13.56).
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using an iterative numerical technique to find the effective pressure distribu-
tion p(r).}

Effective pressure distributions, normalised by the maximum pressure p, and
contact radius g, for smooth surfaces under the same load P, are plotted in
Fig. 13.11(b) and (c). As expected, the effect of surface roughness is to reduce
the maximum contact pressure p(0) and to spread the load over an area of
greater radius. The solution to equations (13.51), (13.52) and (13.53) depends
upon two independent non-dimensional parameters. The first, which we shall
denote by a, can be expressed variously by

o, 0GR (16RE*2 )”3
5o > \ 9p?
where § 4 is the bulk compression and 4 is the contact radius for smooth surfaces

under the load P, i.e. given by the Hertz theory.} The second parameter is
defined by Greenwood & Tripp as

u= %nsas(zR/Ks)”2 (13.55)
which depends on the topography of the surfaces but not upon the load. The
ratio of maximum effective pressure with a rough surface p(0) to the maximum
pressure with a smooth surface p, (given by Hertz) is plotted against « in Fig.
13.12 for two values of u which bracket a wide range of practical rough surfaces,
It is clear from Fig. 13.11(b) and (¢) that, with a rough surface, the effective
pressure falls asymptotically to zero. The contact area, therefore, is not precisely
defined. One possibility is to define the ‘contact’ radius as the radius at which
the effective pressure falls to some arbitrarily chosen small fraction of the
maximum pressure. Greenwood & Tripp arbitrarily define an effective ‘contact’
radius a* by

a=

(13.54)

3 J.: rp(r) dr

a* (13.56)

L
0

Its value is indicated in the examples shown in Fig. 13.11(d) and (¢). With this
definition theoretical values of a*/a are plotted against & for u = 4 and u = 17 in
Fig, 13.13, where they are compared with experimental measurements of the

t If the elastic foundation model is used in place of equation (13.53) to find the
bulk displacement wy,, together with an exponential probability of asperity heights,
a solution can be obtained in closed form as shown by Johnson (1975).

f Greenwood & Tripp (1967) use the non-dimensional parameter 7 = (8/3v/2)a

-3/2
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contact size. In reality the contact area has a ragged edge (see Fig. 13.14) which
makes its measurement subject to uncertainty. The rather arbitrary definition of
a* is therefore not of serious consequence.

It is clear from Figs. 13.12 and 13.13 that the effect of surface roughness on
the contact pressure and contact area is governed primarily by the parameter
«; the parameter u has a secondary effect. Further, we can conclude that the
Hertz theory for smooth surfaces can be used with only a few per cent error
provided the parameter « is less than about 0.095, i.e. provided the combined
roughness of the two surfaces oy is less than about 5% of the bulk elastic
compression 8.

By influencing the pressure distribution and the contact area, surface rough-
ness influences the magnitude and position of the makimum shear stress in the
solid and hence the load at which bulk yield will take place. For a smooth
(Hertzian) contact the maximum shear stress has the value 0.31pq at a depth
z = 0.48a. Greenwood & Tripp find that with the pressure distributions appro-
priate to a rough surface, as shown in Fig. 13.11, the maximum shear stress

Fig. 13.12. Influence of surface roughness on the maximum contact
pressure p(0) compared with the maximum Hertz pressure pg.
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~0.29p(0) at a depth z ~ 0.35z*. However, since p(0) decreases significantly
with increasing roughness (Fig. 13.12) and a* increases (Fig. 13.13), the maxi-
mum shear stress is reduced and occurs at a greater depth than with smooth
surfaces.

We now return to the question of ‘functional filtering’: how should the sample
length and sampling interval be chosen in order to obtain appropriate values for
the parameters a and u? The sample length presents no great difficulty. Wave-
lengths in the surface profile which greatly exceed the nominal contact diameter
are not going to influence the contact deformation appreciably, so that we
should take L < 4a,. Since o is found in practice to vary approximately as
L% the precise choice of L is not critical. We then use Greenwood’s result
(13.30) and put the standard deviation of the summit heights o5 equal to the
1.m.s. height of the surface ¢ measured from the profilometer trace. If the para-
meter « only is required no further considerations are necessary since o is not
sensitive to sampling interval. If the parameter u is also required then values for
the asperity density ng and the asperity summit curvature kg must be determined.
They are given by equations (13.31) and (13.32) in terms of the peak density
np and the r.m.s. curvature o, found from the profile trace, but both these latter
quantities are strongly dependent on sampling interval. Intuitively we would
expect there to be a scale of roughness below which the asperities would be
immediately destroyed by plastic deformation when the surfaces were brought
into contact and would not contribute significantly to the contact pressure:

Fig. 13.13. Influence of the surface roughness on the effective contact
radius a* compared with the Hertz radius a¢. Experiments: circle -
u = 4; triangle — u = 5; square - u = 15,
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it would then be reasonable not to reduce the sampling interval below this size.
However, it has proved difficult to quantify this cut-off point. At the present
time most profilometers arbitrarily use a sampling interval of ~10 um.

Tangential forces
When two bodies having rough surfaces are in contact the influence of
the surface roughness upon their tangential compliance is also of interest. In
rolling contact surface roughness might be expected to affect the creep coefficients,
An experimental study (O’Connor & Johnson, 1963) of a hard steel smooth
sphere, pressed into contact with a rough flat by a constant normal force, showed

Fig. 13.14. Contact of a smooth steel ball, diameter 25.4 mm, with a rough
steel flat: (@) 0 = 0.19 um, P =10 kg, « = 0.043; () 0 = 0.54 um,
P=60keg «=0.043;(c) 0 =0.54 um, P =4 kg, a = 0.22;
(dyo=2.4pum, P=40kg, o =0.22,

©
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that the compliance under the action of a superimposed tangential force, given
by equation (7.42), was affected very little by the roughness of the surface. This
was the case from the start with a rough ground hard steel surface in which the
asperity deformation was predominantly elastic. With a scratched surface of soft
steel, in which the asperity deformation was fully plastic, the tangential compliance
was somewhat greater on first load than that given by equation (7.42) for smooth
elastic surfaces, but was close to equation (7.42) on subsequent loadings. The
small effect of roughness on tangential compliance can be explained as follows.
First, the tangential elastic compliance of an individual asperity is comparable
with its normal compliance as demonstrated by equations (7.43) and (7.44),
provided that the ratio of the tangential to the normal traction is relatively

small compared with the coefficient of limiting friction. In the central region

of the contact area, as Fig. 7.7 shows, the tangential traction is a minimum

while the normal pressure is a maximum. The real contact area in this region

will be high and, in consequence, the compliance of the asperities will be small.
Since the tangential traction is also small in that region the contribution of

the asperity deformation to the bulk compliance is negligible. At the edges of

the contact when the tangential traction is larger and the normal pressure

smaller, some micro-slip will take place in the same manner as described in
§7.2(d).

In rolling contact, the creep ratio ¢ is determined by the strains in the region
of no slip at the leading edge of the contact area. In this region the tangential
traction is less than the normal pressure so the same argument applies, though
with less force, to explain the small influence of surface roughness on creep in
rolling contact.

The parameter a, which was used as a measure of the effect of surface rough-
ness on static contact under a purely normal load should also apply to static and
rolling contacts under the action of tangential loads. However the condition that
a < 0.05 for the effect of surface roughness to be negligible in normal contacts
is likely to be somewhat conservative when applied to tangential forces.
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Cauchy Principal Values of some useful integrals
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APPENDIX 2

Geometry of smooth non-conforming surfaces in contact

The profile of each body close to the origin O can be expressed:

= (1/2Rll)xl2 + (1/2R’1’)J’12
and

Z2 =7 {(1/2R'2)x22 + (1/2R'2')y22}
where the directions of the axes for each body are chosen to coincide with the
principal curvatures of that body. In general the two sets of axes may be inclined
to each other at an arbitrary angle 8, as shown in Fig. A2.1(2).

We now transform the coordinates to a common set of axes (x, y) inclined at
a to x, and B to x, as shown. The gap between the surfaces can then be written

h=z,—z,=Ax*>+By*+ Cxy

Fig. A2.1
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where

[—

=\ 75— = )sin2f—3; | 5 — = )sin 2
*\R! R! *\R! R!

The condition that C should vanish, so that

h = Ax*+ By*
is satisfied by the triangle shown in Fig. A2.1(d), with the result:
1 1 1 1
A~B =} (—,———" cos2a+%( —,——")00826
Ri R, R, R,

(1 1 \? 1 1\?
R, R| R, R}

1 1 1 1 172
+2 - —")< — T)COS 26
Ry Ri/\R, R;

1 1 1 1
A+B=%(—,+ —"+—7+—;)
Rl Rl R2 R2

from which the values of 4 (= 1/2R") and B (= 1/2R") can be found. N.B. Concave
curvatures are negative,

Finally
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Summary of Hertz elastic contact stress formulae

1—p%2 1—p,2\"!
E*E( v 2)
E, E,

R=(1/Ry+1/Ry)™
(a) Line contacts (load P per unit length)

Semi-contact-width:

4PRA\/?
o~(7)
nE*

Max. contact pressure:
2P (PE * )1 2

Po= R

Max. shear stress:

71=030p,atx=0, z=0.78a
(b) Circular point contacts (load P)

Tda

Radius of contact circle:

3PR 1/3
4E*

Max. contact pressure:

(BP (‘6PE*2)“3
Po™ 2mz2)” r°R?

Approach of distant points:

a2 9 P2 1/3
()
R 16 RE*?
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Max. shear stress:
7:=031pgatr=0, z=0.48a
Max. tensile stress:
0,=35(1—2W)poatr=a, z=0
(¢) Elliptical point contacts (load P)
a = major semi-axis; b = minor semi-axis; ¢ = (zb)"’*; R" and R" are
major and minor relative radii of curvature (see Appendix 2); equivalent
radius of curvature R, = (R'R")"/?

a/b ~ (R'/R" )3

€

c=(@@abh)?= (3P )1,/3 Fi(R'/R™)

4E*
Max. contact pressure:
3P [6PE*?\'/
= —= F (R'/[RNH*3
Po > mab (7T3Re2) [F1(R'/R")]

Approach of distant points:
9P2 1/3
8= (————) F,(R'/R"
[eR.E" 2(R/R")

The functions F(R'/R") and F,(R'/R") are plotted in Fig. 4.4 (p. 97). To
a first approximation they may be taken to be unity.
For values of maximum shear stress 7, see Table 4.1 (p. 99).
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Subsurface stresses in line contact

Tractions: p =po{l — (/a)*}'"*; q = qo{l — (x/a)* }''*

—(0x )p/p oand —(7zx )q/QO

*x/a
z/a 0 0.2 0.4 0.6 0.8 1.0 1.5 2.0
0 1.000 0980 0917 0.800 0.600 O 0 0
0.2 0.659 0.642 0.591 0.507 0.402 0.329 0.124 0.060
0.4 0.426 0416 0391 0357 0330 0.316 0.197 0.109
0.6 0.275 0.272 0.267 0.265 0.270 0.276 0.221 0.142
0.8 0.180 0.182 0.188 0.200 0.217 0.232 0.218 0.160
1.0 0.121 0.125 0.135 0.153 0.173 0.192 0.201 0.165
1.5 0.051 0.054 0.065 0.081 0.099 0.118 0.148 0.148
2.0 0.025 0.027 0.034 0.045 0.059 0.073 0.103 0.117
_(Uz)p/po

tx/a
z/a 0 0.2 0.4 0.6 0.8 1.0 1.5 2.0
0 1.000 0980 0.917 0.800 0600 O 0 0
0.2 0.981 0959 0.892 0.767 0.549 0.212 0.006 0.001
0.4 0.928 0.906 0.834 0.705 0.509 0.281 0.034 0.007
0.6 0.857 0.834 0.765 0.648 0.490 0.320 0.074 0.020
0.8 0.781 0.760 0.699 0.600 0474 0.342 0.114 0.038
1.0 0.707 0.690 0.638 0.557 0457 0.352 0.148 0.059
1.5 0.555 0.544 0.514 0468 0410 0.346 0.202 0.107
2.0 0447 0441 0424 039 0.361 0.322 0.221 0.140
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1 (Tz:c)p/po and $ (Uz)q/%

tx/a
z/a 0 0.2 04 0.6 0.8 1.0 1.5 2.0
0 0 0 0 0 0 0 0 0
0.2 0 0.038 0.080 0.131 0.192 0.192 0.025 0.007
04 0 0.064 0.130 0.195 0.242 0.230 0.076 0.027
0.6 0 0.075 0.147 0.209 0.245 0.238 0.11Yy 0.051
0.8 0 0.075 0.145 0.200 0.231 0.231 0.147 0.075
1.0 0 0.070 0.133 0.182 0.211 0.217 0.161 0.095
1.5 0 0.050 0.096 0.134 0.160 0.173 0.162 0.121
2.0 0 0.035 0.068 0.096 0.118 0.133 0.142 0.124
$(Ux)q/(I()

*x/a
z/a 0 0.2 0.4 0.6 0.8 1.0 1.5 2.0
0 0 0400 0.800 1.200 1.600 2.000 0,764 0.536
0.2 0 0.282 0.550 0.782 0.934 0958 0.712 0.521
0.4 0 0.185 0.354 0489 0.577 0.625 0.596 0.481
0.6 0 0.117 0223 0.309 0.375 0426 0473 0425
0.8 0 0.073 0.141 0.200 0.251 0.297 0.368 0.365
1.0 0 0.046 0.090 0.132 0.172 0.210 0.285 0.307
1.5 0 0.016 0.033 0.052 0.073 0.095 0.151 0.192
2.0 0 0.007 0.014 0.023 0.034 0.046 0.083 0.118
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Linear creep coefficients as defined in equations (8.41),
(8.42) and (8.43) (v = 0.3)

Ellipticity —Cu —Cp Cp=—Cxp —Cs
0.2 3.56 2.65 0.62 4.68
2 ® 0.4 3.72 2.91 0.83 2.42
— 0.6 390 3.17 1.04 1.74
b 0.8 408 3.46 1.27 1.38
1.0 4.29 3.73 1.50 1.18
0.8 4.58 4.11 1.82 1.01
b 0.6 4.99 4,65 2.29 0.86
Z 0.4 5.80 5.59 3.27 0.70
0.2 7.93 8.45 6.76 0.57
(i) 2.04
1.0 5.16 432 {_1_44 1.84
Ao 3.52 2.47 ~ -

Note: (i) a is the semi-axis of the ellipse of contact in the rolling direction.
(ii) Approximate values from equations (8.34), (8.36), (8.38) and (8.39).
(iii) Strip theory, equation (8.50).

From Kalker (1967a).
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Subject index

adhesion between elastic bodies, 125-9
Amonton’s law of friction, 204, 212
in rolling contact, 244, 265
anisotropic materials, 134-5
axi-symmetrical elastic stresses, 76-80

ball-bearings

Heathcote slip in, 268-70

spin in, 8-9
ball and socket, 117
Bauchinger effect, 184
bearing area, 407
belt

creep of, 245-7

model for tyre, 283
boundary element method, 55
brittle materials

ring cracks in, 94, 125, 178

calendering, 312-28
camber thrust, 267, 280
cast iron in contact with steel, 110
Cauchy principal value of integrals, 27, 30,
424
cavity mode] of indentation, 173-6
circular region of elastic half-space
axi-symmetrical tractions on, 76-80
cyclic loading of, 125
general pressure on, 63
Hertz pressure on, 60-3, 93-4
Hertz traction on, 74-5
sub-surface shear stress, 62, 99
torsional loading of, 80-2
uniform normal displacement of, 59-60
uniform pressure on, 56-9

uniform tangential displacement of, 71-4

cold rolling, 326~8
complementary energy, 151

compliance, 220, 356
effect of roughness on, 422-3
conductance, 415
cone
elastic contact of, 114
impact by, 353
plastic indentation by, 168-9
conforming contacts, 1, 114-18
ball and socket, 117
numerical method, 144-9
pin joint, 116
rolling, 268-70
contact resonance see resonance
cornering force (tyre), 277-8, 282
corrugation, 350
creep (material), 186
linear, 191
non-linear, 196, 200
creep (rolling), 242
between strip and rollers, 315
coefficient (creepage), 255, 259,431
effect of roughness on, 423
of elastic belt on pulley, 245-6
experiments, 251, 266
linear theory of, 257-9
of pneumatic tyres, 279
of railway wheel, 264-5, 268
strip theory of, 261-3
creep compliance function, 185
curvature
equivalent radius of, 85, 97
principal radius of, 85-7
radius of, 85-7
relative radius of, 85-7, 97
cyclic loading, 224-31
cylindrical bodies
compression of, 130-1
contact of, 99-104, 129-34
end effects in, 132
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onset of yield in, 155

profile for uniform loading of, 134

sub-surface stresses in, 134
cylinder, contact on flat ends of, 111

damping, vibration, 230
Deborah number, 304, 306, 310
dimensional analysis of contact, 89-90
disc machine, 8
distortivity, 380, 385, 387, 390
Dundur’s theorem, 381
Duralumin

ball rolling on steel, 251

in contact with steel, 110

edge of contact, stresses at, 25-6, 37, 39,
107-11, 214, 248
elastic constants, 110
difference of in rolling contact, 246-51,
315-16
difference of in static contact, 110,
119-25, 207-9
plane strain modulus, 89, 110
elastic foundation model
in elastic rolling, 274-7
in normal contact, 104-6
in viscoelastic rolting, 303-6
elastic-plastic indentation, 171-84
penetration in, 179-80
pile-up at edge of, 178
unloading of, 179-84
elastic-plastic rolling contact, 286-98
elastohydrodynamic lubrication, 331-9
elliptical region of elastic half-space
general pressure on, 63, 67-8
general traction on, 76
Hertz pressure on, 65-7, 95-9
Hertz traction on, 75
sub-surface shear stress, 67, 99
torsional loading of, 82-3
uniform normal displacement of, 64
uniform tangential displacement of, 71
end effects in rollers, 132-4
equivalent radius of curvature, 85, 97
exponential roughness, 413-15

finite-element method, 55, 172
force at surface of half-space
dynamic (‘step”), 344-5
harmonic, 345-6
high speed travelling, 370-2
non-linear material, 196-8
normal line, 14-17
normal point, 50-3
tangential line, 17-18
forces at point of contact, 4-5
frame of reference, 1-3
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fretting (fatigue), 26, 230
functional filtering, 410, 421

Gaussian roughness, 407-8, 410,413
gears, involute, 6, 129
gelatine sphere, adhesion of, 128
glass

in contact with steel, 110

stress waves in, 358-9
granular material, 231
grinding, surfaces produced by, 397

hardness, 90, 157
Vickers’, 177
heat source
continuous point, 376, 381
instantaneous line, 376
instantaneous point, 375-6
moving, 377-80, 382-3
‘Heathcote slip’, 251, 269
Hertz theory, 90-104
basic assumptions of, 91-2
cylindrical bodies (2-D) for, 99-104
effect of roughness on, 419-20
general profiles for, 95-9
limitations of, 99
solids of revolution for, 92-5
summary of formulae, 427-8
hot rolling, 322-6
hydrodynamic lubrication, 328-31
hysteresis, elastic
in contact resonance, 350
in normal contact, 181
in rolling contact, 284-5
in tangential contact, 227, 229

impact
collinear elastic, 351-5
high speed, 366
hypervelocity, 367
longitudinal, 341-2, 359-60
oblique elastic, 355-8
plastic, 361-6
time of, 353, 365
viscoelastic, 196, 368-9
impedance, 346
imperfect contact, 389-90
inhomogeneous materials, 134-6
interference fringes (optical), 86, 90

junction growth, 235
Kelvin solid, 193
layer, elastic, 136-42

line force on half-space
high-speed travelling, 370-2
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non-linear elastic, 196-8

normal, elastic, 14-17

tangential, elastic, 17-18
lubrication

of elastic cylinders (elastohydrodynamic),

331-3
of rigid cylinders, 329-31
variable viscosity, 333-9

Maxwell material, 186-7, 191, 194-6, 369
microslip

between rollers and strip, 314

cyclic loading, in, 224-31

due to dissimilar materials, 121

elastic wedge, 110

flat punch, circular planform, 80

flat punch (2-D), 40

‘Heathcote slip®, 269

oblique impact, in, 356

‘Reynolds’ slip’, 247, 250

rolling contact, in, 242, 245, 248-50,

253-6, 260-4
tangential loading, in, 211, 217-24
torsional loading, in, 232-3

non-conforming contacts, 1
anisotropic materials with, 135
geometry of, 84-7,425-6

non-linear creep (material), 196, 200

non-linear elasticity, 196
line contact with, 198
point contact with, 199

numerical methods, 144-52

oblique loading, 221-4
oscillating forces, 224-31, 345-9

Peclet number, 378-9
perspex
in contact with steel, 110
radial cracks in, 178
photoelasticity, 22, 99, 103, 112
in rolling contact, 265
‘pile-up’ at edge of indentation, 178-9,
200, 362
pin joint, 117-18, 141
plane strain modulus, 89, 110
plastic yield, onset of, 153-7
in cylinders in contact, 154
in general profiles, 155
in impact, 361
in rolling contact, 286-7
in sliding contact, 206-7
in solids of revolution, 154
in strip between rollers, 318-20
in wedge and cone, 155-6
plasticity index, 416
plates, contact with, 143
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ploughing, 237-41
pneumatic tyres see tyres
point force on elastic half-space
dynamic (‘step’), 344-5
harmonic, 345-6
normal, 50--3
tangential, 68-70
polygonal region of elastic half-space
non-uniform pressure on, 55-6
uniform pressure on, 53-5
potential functions of Boussinesq and
Cerruti, 45-50
for normal point force, 50
for pressure on elliptical area, 63-5, 98
for tangential point force, 68
principal value (Cauchy) of integrals, 27,
30,424
profilometer, 406
punch
flat, circular planform, 59-60, 71-4,
80-2
flat, elliptical planform, 64, 74, 82-3
flat (2-D), 35-42
non-linear materials, indentation by,
198-9
plastic indentation by, 168-9
polynomial profile (2-D), 30-2
stresses at the edge of, 108
thermoelastic contact by, 390

railway wheel/rail, 264-5
random rough surfaces
characteristics of, 406
contact of, 411-23
exponential height distribution of,
413-5
Gaussian height distribution of, 407-8,
410,413
real area of contact, 397, 400-6, 414-15
receptance, 346
functions, 347
receding contact, 141-2
rectangular elastic block
in contact with cylinder, 131
in contact with plane, 111
rectangular region, pressure applied to,
54-5
relaxation function, 185, 303-4
residual stresses
in normal contact, 183-4
in rolling contact, 295
resonance, contact, 349-51, 357
restitution, coefficient of, 362-5, 369
revolution, solids of, 87, 92-5
Reynolds’ equation, 329
Reynolds’ slip, 250
rigid-perfectly-plastic material
see slip-line fields
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ring cracks in brittle solids, 94, 125, 178
roller bearings, 129
end effects in, 132-4
rollers (rolis)
elastic contact of, 129-34
elastic strip between (calendering),
312-8
lubrication of, 328-39
plastic strip between (rolling), 320-8
rolling
ball in conforming groove, 268-70
cumulative plastic flow in, 292-5
definition of, 3
elastic foundation model of, 274-7
free, 5, 242, 246
of metal strip, 320-8
supersonic (superseismic), 372-3
tractive, 242, 25268
transient, 270-4
viscoelastic bodies of, 302-6
with spin, 242, 256-68
rolling creep see creep
rolling friction (resistance), 306-11
due to elastic hysteresis, 285, 309
due to Heathcote slip, 269, 307
due to Reynolds’ slip, 250, 307
due to surface roughness, 311
due to traction and spin, 308
with elastic-plastic materials, 294, 309
with rigid-plastic materials, 299-301, 309
with viscoelastic materials, 304-5, 310
rolling moment, 5, 250, 269, 285, 305
roughness parameter, 419
rubber in contact with steel, 110
in rolling contact, 286

sampling interval, 408-11, 421
self-aligning torque (tyre), 278, 282
self-similarity, 119, 121, 161
separation

adhesive force as a function of, 125

rough surfaces of, 412-13
shakedown, 286, 288

limit in line contact, 289

limit in point contact, 291

with kinematic hardening, 292
shells, contact with, 144
shot-peening, 183, 398
sideslip (tyres), 281
singular integral equations, 29
singular pressure element, 150-1
sliding

cylinder, 204-9

definition of, 3

sphere, 209-10

supersonic (superseismic), 372-3

thermoelastic effects due to, 391-6
sliding contact, 202-10
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slip see microslip
slip-line field, 157-60
extension into rigid zone of, 170-1
for cone indentation, 168-9
for hot rolling of metals, 324-6
for indentation by sphere, 170-1
for plastic wedge, 165-8
for rolling contact of rigid cylinder,
295-302
for serrated surface, 404
for wedge indentation, 160-5
spin
in ball-bearings, 8-10
definition of, 4
in pneumatic tyres, 279
in rolling, 242
spin moment, 5, 10, 233
spin parameter, 244
spin pole, 259
strain, representative, 176, 199
stress intensity factor, 129,401
stress waves, 340-3
dilatational, 343
distortional (shear), 343
in elastic impact, 354, 358
head (S-P), 345
longitudinal, 343
Rayleigh, 343
supersonic (superseismic), 372
transverse, 343
velocities of, 343
strip between rollers, 312-27
onset of plastic flow in, 318-20
plastic reduction in, 320-7
sub-surface shear stress, 62, 67, 94, 99,
102, 114, 399, 420-1
sub-surface stresses
circular contact region, 57, 60, 62, 94
contact of cylinders, 103, 429-30
elliptical contact region, 66-7, 99
sliding contact, 205, 209-10, 429-30
table of values, 429-30
superseismic see supersonic
supersonic (superseismic), 355, 369
surface energy, 125
surface loading (plane strain)
axial traction, 42-4
displacements specified, 28-35
distributed tractions, 18-21
line forces, 14-18
triangular distributions, 26-8
uniform normal pressure, 21-4
uniform tangential traction, 24-6
surface loading (3-D)
axi-symmetric, 76-80
Hertz pressure, 60-3, 65-7
non-uniform pressure, 55-6, 63, 67-8
normal point force, 50-3
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potential functions, 45-9

tangential point force, 68-70

tangential tractions, 70-6

torsional, 80-3

uniform normal displacement, 59-60, 64
uniform pressure, 53-5, 56-9

uniform tangential displacement, 71-4

tangential loading
cyclic, 221-31
elastic, 210-31
plastic, 233-41
temperature in half-space, 375-80
continuous point source, due to, 376
distributed sources, due to, 376-7
instantaneous line source, due to, 376
instantaneous point source, due to,
375-6
moving source, due to, 377-80
thermal rectification, 390
thermoelastic distortion, 380-95
contact at different temperatures, due to,
383-90
Dundurs’ theorem, 381
moving heat source, due to, 382-3
point source, due to, 381
transient, 395-6
uniform heating, due to, 381-2 _
uniform temperature, due to, 382
thermoelastic instability, 391-96
torsional contact, 231-3
transient rolling contact, 270-4
oscillating tractive force, due to, 274
starting from rest, 272
travelling loads, 369-72
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tungsten carbide in contact with steel, 110
turning, surfaces produced by, 398
tyres (pneumatic), 277

creep in free rolling, 279

sideslip and spin, 279

unloading
of an elastic contact, 125, 224-6
of an elastic-plastic contact, 181-4
of a viscoelastic contact, 193-4

variational methods, 147, 151
Vickers pyramid hardness, 177
viscoelastic material, 184-7
in normal contact, 187-196
in rolling contact, 302-6

waves
elastic see stress waves
plastic, 238

wavy surfaces
one-dimensional contact of, 398-402
plastic deformation of, 403-6
thermoelastic contact of, 390, 391-4
two-dimensional contact of, 402-3

wear, 234, 240

wedge
elastic contact of, 111-14
plastic deformation of, 165-8
plastic indentation by, 160-5
plastic shear of, 234-7

Williams, Landen and Ferry shift factor, 310

yield see plastic yield



