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Millennium Problem

Given ν > 0, d = 3, prove (or disprove) the existence and
smoothness of the solution of

∂v

∂t
+ v · ∇v +∇p − ν∆v = 0 in Ω ⊂ Rd ,

∇ · v = 0 in Ω ⊂ Rd ,

v · n = v · s = 0 on ∂Ω,

v(x, t = 0) = v0(x) in Ω ⊂ Rd ,

for all t > 0.
Award: $1M.
Clay Mathematics Institute:
http://www.claymath.org/sites/default/files/navierstokes.pdf
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Literature Review - Periodic Domains

Solutions of the 2D Periodic NSE are analytic in time,
but in the 3D periodic case this is true only for a very
small interval of time (Foias and Temam, 1989),

If the amplitude of v0 is sufficiently small, then unique
and smooth solutions are proven to exist for all time
(Foias and Temam, 1989),

The first-ever estimate showing how rapidly the enstrophy
can grow in a 3D periodic setting (Lu and Doering, 2008),

There exist a couple of similar results involving both the
Periodic Burgers Equation (Ayala and Protas, 2011) and
the 2D Periodic NSE (Ayala and Protas, 2014),
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Literature Review - Bounded Domains

Bounded domains may lead to a finite-time blow-up in
the case of the 3D Euler Equation (Hou and Luo, 2014),

Lack of analogous results of the 3D Navier-Stokes,

Lack of relevant estimates/computational results for the
2D/3D Navier-Stokes.

Adam Sliwiak, Bartosz Protas Maximum Rate of Growth of Enstrophy in the Navier-Stokes System on 2D Bounded Domains



6/ 31

Motivation
Preliminaries

Maximum Enstrophy Growth as an Optimization Method
Numerical Methods and Results

The Vorticity Transport Equation
Enstrophy and its Instantaneous Growth Rate

The Vorticity Transport Equation

The two-dimensional vorticity transport equation with no-slip
boundary conditions:

∂ω
∂t

+ (v · ∇)ω = ν∆ω in Ω ⊂ R2,
v · n = v · τ = 0 on ∂Ω,

where
v(x , y , t) = [u(x , y , t), v(x , y , t)],
ω(x , y , t) = ∇⊥v = ∂v

∂x
− ∂u

∂y
.
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Streamfunction

Velocity vs. streamfunction

v = ∇× ψk,

Streamfunction vs. vorticity

∆ψ = −ω,

Boundary conditions for the streamfunction

ψ =
∂ψ

∂n
= 0,

Zero mean property∫
Ω

ωdΩ = −
∫

Ω

∆ψdΩ =

∮
∂Ω

∂ψ

∂n
dσ = 0.
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Enstrophy and its Growth Rate

Enstrophy as an L2-norm of the vorticity:

E(ω) =
1

2

∫
Ω

ω2dΩ.

Instantaneous rate of growth of enstrophy

dE
dt

=
1

2

d

dt

∫
Ω

ω2dΩ =

∫
Ω

ω
∂ω

∂t
dΩ = −

∫
Ω

ω(v · ∇)ωdΩ

+ν

∫
Ω

ω∇ωdΩ
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Enstrophy and its Growth Rate

Since we impose no-slip boundary conditions on the velocity
field, ∫

Ω

ω(v · ∇)ωdΩ = 0.

Therefore,
dE
dt

= ν

∫
Ω

ω∆ωdΩ .
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Optimization Problem

Given the initial value of the enstrophy, E0, we want to
maximize

J (ω) = ν

∫
Ω

ω∆ωdΩ,

subject to
1
2

∫
Ω
ω2dΩ = E0,

∆ψ = −ω in Ω,

ψ = ∂ψ
∂n

= 0 on ∂Ω.
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Gradient-Based Method

Goal: To find the vorticity field ω̃ that maximizes J ,
Solution: Steepest-Ascent Method,

ω(n+1) = ω(n) + τn∇H1J (ω(n)),

ω(1) = ω0,

where

τn = argmaxτ>0 P
(
ω(n) + τ∇H1J (ω(n))

)
.
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Computing the Gradient

Riesz Representation Theorem:

J ′(ω, ω′) =
〈
∇H1J (ω), ω′

〉
H1

Expand the inner product:〈
∇H1J (ω), ω′

〉
H1

=

∫
Ω

[
(Id−∆)∇H1J (ω)

]
ω′dΩ

+

∮
∂Ω

∂

∂n

[
∇H1J (ω)

]
ω′dσ.
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Computing the Gradient

Use the definition of J and perturb it,

J ′(ω, ω′) =

∫
Ω

2ν∆ωω′dΩ− ν
∮
∂Ω

ω′
∂ω

∂n
− ω∂ω

′

∂n
dσ∫

Ω

2ν∆ωω′dΩ− ν
∮
∂Ω

ω′
∂ω

∂n
dσ +

∮
∂Ω

∂ω

∂s
p′dσ.

Compare two integrals.
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Computing the Gradient

Remedy:

Use the Poisson Pressure Equation (PPE),

Define f (ω), st.

∆f = 0 in Ω,

∂f

∂n
=
∂ω

∂s
on ∂Ω,

Define k , s.t.

∆k =
∂2

∂x∂y
(fs11) +

(
∂2

∂y 2
− ∂2

∂x2

)
(fs12) in Ω,

k = arbitrary on ∂Ω.
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Computing the Gradient

Derive the final form of J ’,

J ′(ω, ω′) = ν

∫
Ω

[2∆ω + k + f ω]ω′dΩ−ν
∮
∂Ω

[
∂f

∂s
+
∂ω

∂n

]
ω′dσ,

and, by comparison,

(Id−∆)∇H1J (w) = ν (2∆ω + k + f ω) in Ω,

∂

∂n
∇H1J (w) = −ν

(
∂f

∂s
+
∂ω

∂n

)
on ∂Ω.
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Euler-Lagrange Equations

Augment the cost functional,

JA(ω) = J (ω) + λ

(
1

2

∫
Ω

ω2dΩ− E0

)
+

∫
Ω

ϕ (∆ψ + ω) dΩ,

perturb it, and set all terms proportional to ω′ to 0...
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2ν∆ω + λω + ϕ + ω

[∮
∂Ω

∂ω

∂s
G(x, x′)ds

]
+

∮
∂Ω

∂ω

∂s

∫
Ω

G(x, x′′)

[
4
∂u

∂x
(D1 ·K(x′′, x′) + D1 · ∇L(x′′, x′)) Ω,

+

(
∂u

∂y
+
∂v

∂x

)
(D2 ·K(x′′, x′) + D2 · ∇L(x′′, x′))

]
dσdΩ = 0

∆ψ = −ω Ω,

∆ϕ = 0 Ω,

ψ =
∂ψ

∂n
= 0 ∂Ω,

∂ω

∂n
=

∂

∂s
M∗

∂ω

∂s
∂Ω,

1

2

∫
Ω

ω2dΩ = E0 (initial enstrophy constaint).
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Chebyshev Collocation Method

Chebyshev approximation,

u(xi) = uN(xi) =
N∑

k=0

ûkTk(xi), i = 0, ...,N ,

Gauss-Lobatto grid,

xi = cos

(
πi

k

)
, i = 0, ..., k ,

Chebyshev polynomial,

Tk(x) = cos(kcos−1x), k = 0, 1, 2, ...
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Differentiation

Two methods of differentiation: in Chebyshev space and
in real space,

The latter prevents us from aliasing errors and Chebyshev
transforms/cosine FFT (cost N logN),

Differentiation matrix is full and poorly-conditioned.

Differentiation in real space in flexible,

u′ = DNu,
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Gauss-Lobatto/Gauss-Lobatto-Fourier Grid
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Spectral Accuracy
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Error decreases as O(cN), 0 < c < 1.
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κ-test

Check the correctness of the H1 gradient,

κ(ε) =
ε−1 (J (ω + εω′)− J (ω))〈

∇H1J (ω), ω′
〉
H1

.
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Initial Vorticity Field

How to find the initial vorticity field ω0?
Solve

−∆ω − ϕ = λω,
−∆ψ − ω = 0,
−∆ϕ = 0,
−∆p∗ = 0,

with the following boundary conditions:

ψ = ∂ψ
∂n

= 0,
∂ω
∂n

= −∂p∗

∂s
,

∂ω
∂s

= ∂p∗

∂n
.

The above eigenvalue problem is derived from the original
Euler-Lagrange system.
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Sparsity diagrams

Generalized Eigenvalue Problem,

Ay = λBy.
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Initial Vorticity Field - Square Domain
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Initial Vorticity Field - Circular Domain
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max dE/dt
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max dE/dt
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Extreme States of the Vorticity
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Extreme States of the Vorticity
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Thank you!
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