

Ground vehicle dynamics in the presence of unsteady aerodynamics loads

Jakub Broniszewski

Janusz Piechna

Outline

- 1. Motivation
- 2. Methodology
- 3. Results
- 4. Plans for future work
- 5. Questions

Main Reason for Need of FSI for Car Dynamics Analysis

- During makeovers the car can experience vertical oscillation
- This movement is conjugated with change in pressure distribution
- The phenomenon is dynamic
- FSI approach is required. In this work we will be focused on vertical oscillation and how it will affect aero forces.

Ultimately, we would like to be able to control active aerodynamics to damp car oscillation.

Main reason for need of FSI for car dynamics analysis Extreme example of undesirable car behavior

Methodology and Tools Ecosystem

- Co-simulation approach (FSI)
- Bi-directional data exchange between Fluent and MCS.Adams
- Matlab acting as an interface and control system

Methodology Validation – Experiment

Trajectory

Variable	Value
Air velocity	~4 m/s
Cylinder dimension	50x50x540
Frequency	~2.6Hz
Amplitude	~200mm

Methodology Validation – Numerical Model

Fluent mesh and BCs

Adams Model

Æ

Methodology Validation – Numerical Results

Analyzed Configurations

Base Configuration

Configuration with movable airfoil

Starting position

During movement

Full Car Dynamics – Braking Maneuver

- CFD model build in ANSYS Fluent (half car)
- Full car dynamic model build in MSC.ADAMS/Car
- Interface build in Matlab/Simulink

FLUENT Flow Analysis

MSC.ADAMS/Car Car Body Dynamics

Matlab/Sumulink interface & control system 10

Main Technics Used in the Analysis Flow Model - Tetrahedral Mesh Converted to Polyhedral

Main Technics Used in the Analysis Flow Model - Overset Mesh

Main Technics Used in the Analysis

Flow Software / Interface – Fluent "as-a-server"

Pros	Cons
Easy to connect with external software	Additional Software
Different platforms and locations	
Continues journaling	

Main Technics Used in the Analysis Moving Domain

We have different reference frame

Results Car behavior

Results

Warsaw University of Technology, Faculty of Power and Aeronautical Engineering

Results

Results

Preliminary Results Flow Structure @ Constant Velocity

The analysis was performed by Krzysztof Kurec

The Ultimate Application

The analysis was performed by Krzysztof Kurec

The Ultimate Application

Conclusions and Future Work

- Proposed methodology works as expected
- Validation against the test is crucial
- High speed unsteady aerodynamics effects are important

Thank You!!