2D FE model of a centilever beam loaded by pressure

fixed suport at x = 0: UX = UY = UZ = 0

<u>Comment:</u>

The problem can be solved as a 2D structural structure, assuming a plane stress condition. Numerical results will be compared with the analytical solution.

Clear and start a new database

Utility Menu > File > Clear & Start New > Do not Read File > OK > CLEAR ... EXECUTED? > Yes Utility Menu > Plot > Replot

Choose the element type

Main Menu > Preprocessor > Element Type > Add \rightarrow OK > Solid > Quad 4 node 182 \rightarrow OK (Fig. 1)

Main Menu > Preprocessor > Element Type > Options \rightarrow OK > Element Technology K1 = Enhanced Strain > Element Behavior K3 = Plane stress w/thk \rightarrow Help (Fig. 2) *

Information from ANSYS Help Viewer

... <u>PLANE182</u> is used for <u>2-D modeling of solid structures</u>. The element can be used as either <u>a plane element (plane stress</u>, plane strain or generalized plane strain) or an axisymmetric element. It is defined by <u>four nodes</u> having <u>two degrees of freedom</u> <u>at each node: translations in the nodal x and y directions</u>. ... PLANE182 Element Technology ... For more information, see <u>Element Technologies</u> > 5.1.2. Element Technologies > Current-Technology > 2.4.1. Legacy vs. Current Element Technologies > Automatic Selection of Element Technologies and Formulations> Table 5.4: Recommendation Criteria for Element Technology (<u>Linear Material</u>) > Plane stress > <u>KEYOPT(1) = 2</u> (Enhanced Strain).

assumed linear isotropic properties of a steel

Close ANSYS Help Viewer and "PLANE 182 elem. type options" \rightarrow OK, and "Element Type" \rightarrow Close

Define the beam thickness as a real constant

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete > Add...> Type 1 PLANE 182 \rightarrow OK (Fig. 3) Real Constant Set. No. = 1, Thickness THK = 6 \rightarrow OK > Close (Fig. 4)

Main Menu > Preprocessor > Material Props > Material Models > Material Model Number 1 > Structural > Linear > Elastic > Isotropic > EX = 2e5, PRXY = $0.3 \rightarrow OK > Close$ (Fig. 5)

			\frown
Λ	∧ Define I	Material Model Behavior	
Eile Select List Plot Plot D	Material Edit Favorite Help Material Models Defined Material Model Number 1	Material Models Available	
Toolbar SAVE DB RESUM DB (Main Menu		Structural Linear Elastic	$E = 2.10^5 \text{ MPa} - Young's modulus}$
 □ Preferences □ Preprocessor □ Element Type □ Real Constants 	Linear Isotropic Properties for Mater Linear Isotropic Material Properties for Material	rial Number 1 x hotropic sotropic	v = 0.3 - Poisson ratio
 □ Material Props □ Material Library □ Temperature Units □ Electromag Units 	T1 Temperatures 0	+ansion fficient	× •
 ■ Material Models ■ Convert ALPx ■ Change Mat Num ■ Failure Criteria 	EX 2265 PRXY 0.3		
Write to File Read from File Sections Modeling Modeling Meshing	Add Temperature Delete Temperature	Graph Cancel Help	Fig. 5
	ľ		

Create a rectangle

Main Menu > Preprocessor > Modeling > Create > Areas > Rectangle > By Dimensions X1, X2 \rightarrow 0, 200 ; Y1, Y2 \rightarrow -10, 10 \rightarrow OK (Fig. 6)

Assign attributes (material, real constant, element type)

Main Menu > Preprocessor > Meshing > Mesh Tool > Element Attributes > Areas \rightarrow Set (Fig. 7) Pick the rectangle \rightarrow OK

Assign attributes: Material numer (1), Real constant set numer (1), Element type number (1) \rightarrow OK (Fig. 8)

Preprocessor Element Type	Area Attributes				
Real Constants	· Pick C Unpick	^	Area Attrib	utes	X
Material Props Sections	© Single C Box	[AATT] Assign Attributes to Picked Areas			
Modeling	C Polygon C Circle	MAT Material nur	nber	1 -	>
Meshing E Checking Ctrls	C Loop	REAL Real constan	t set number	1 -	5
Numbering Ctrls Archive Model	Count = 1 Maximum = 1	TYPE Element type	number	1 PLANE182	
Coupling / Ceqn	Minimum = 1 Area No. = 1	ESYS Element coor	dinate sys		
B Multi-field Set Op E Loads		SECT Element sect	ion Fig. 8	None defined	•
Physics Path Operations	(* List of Items	OK	Apply	Cancel Help	
⊞ TimeHist Postproc		4			
ROM Tool Radiation Opt	OK Apply	_			
Session Editor	Reset Cancel				
E Finish	Pirk All Help	•			
[AATT] Pick or enter are	eas for attribute assignment		mat=1 ty	pe=1	

Define discretization density

Main Menu > Preprocessor > Meshing > Mesh Tool > Size Controls > Areas \rightarrow Set > pick the rectangle \rightarrow OK Element edge length = 2 \rightarrow OK (Fig. 9)

Main Menu > Preprocessor > Meshing > Mesh Tool > Size Controls > Lines \rightarrow Set > pick vertical lines \rightarrow OK No. of element divisions = 12 \rightarrow OK (Fig. 10)

		Element Sizes on Picked Lines [LESIZE] Element sizes on picked lines	Fig. 10
MeshTool Size Controls: Global Set Areas Set Clear Lines Set Copy Flip	Fig. 9 Element Size at Picked Areas [AESIZE] Element size at picked areas SIZE Element edge length OK Apply Cancel Help Help Cancel	ILESIZE J Element sizes on picked lines SIZE Element edge length NDIV No. of element divisions (NDIV is used only if SIZE is blank or zero) KYNDIV SIZE,NDIV can be changed SPACE SPACE Spacing ratio ANGSIZ Division arc (degrees) (use ANGSIZ only if number of divisions (NDIV) and element edge length (SIZE) are blank or zero) Clear attached areas and volumes OK Apply Cancel	

Save a database file

Utility Menu > File > Save as... beam_FEmodel.db \rightarrow OK

Define the type of analysis

Main Menu > Solution > Analysis Type > New Analysis > Static \rightarrow OK (Fig. 12)

Λ	∧ New Analys	is X
<u>File Select List Plot</u>	[ANTYPE] Type of analysis	
		(Static
Toolbar		C Modal
		C Harmonic
	Fig 12	C Transient
Main Menu	<u></u>	C Spectrum
Preferences Preprocessor		C Eigen Buckling
□ Solution		C Substructuring/CMS
□ Analysis Type		1
Restart	OK Cancel	Help
Sol'n Controls		

a static structural analysis

Define boundary conditions

Support

Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Lines > select the vertical line on the left \rightarrow OK > DOFs to be constrained > All DOF = 0 \rightarrow OK (Fig. 13) Main Menu > Preprocessor > Meshing > Mesh Tool \rightarrow Close

Surface load

fixed support

Main Menu > Solution > Define Loads > Apply > Structural > Pressure > On Lines > select the upper horizontal line \rightarrow OK > Load PRES value = 2 \rightarrow OK (Fig. 14)

Save a database file

pressure 6 MPa

7

Utility Menu > File > Save as... beam_FEmodel_BC.db \rightarrow OK

Computation

Solve

Main Menu > Solution > Solve > Current LS > /STATUS COMAND \rightarrow Close \rightarrow OK (Fig. 15) Solution is done! \rightarrow Close (Fig. 16)

<u>Results</u>

Contour map of the displacement in y direction

 $\label{eq:main_state} \begin{array}{l} \mbox{Main Menu} > \mbox{General Postproc} > \mbox{Plot Results} > \mbox{Contour Plot} > \mbox{Nodal Solu} > \mbox{DOF Solution} > \\ \mbox{Y} - \mbox{Component of displacement} \rightarrow \mbox{OK} \quad \mbox{(Fig. 17)} \end{array}$

Contour map of the normal stress in x direction

a relative error $\Delta v(l) = \frac{3.02617-3}{3} = 0.9\%$

Main Menu > General Postproc > Plot Results > Contour Plot > Nodal Solu > Stress > $X - Component of stress \rightarrow OK$ (Fig. 18)

Λ	Contour Nodal S	Solution Data
Eile Select List Plot Plot Plot WorkPlane Parar D Image: Comparison of the second s	Item to be contoured Favorites Nodal Solution DOF Solution Stress	Fig. 18
Main Menu (8) Image: Preprocessor Image: NoDAL SOLUTION Image: Preprocessor Solution Image: Solution STEP=1 Image: Solution SUB =1 Image: Solution SX (AVG) Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stress of the solution Stress of the solution Image: Stresolution	Y-Component of stress Undisplaced shape key Undisplaced shape key Scale Factor Auto Calculated Additional Options	y _ _]3.29730011325 ⑧
Deformed Shape Contour Plot Contour Plot Deformed Shape Contour Plot Deformed Shape Contour Plot Deformed Solu Deformed Solu Deformed Solu Deformed Solu Deformed Solu Deformed Solu Deformed Shape Defo	9.264 -377.747 -226.23 -74.7132 76.8038 228.	DK Apply Cancel Help 321 531.355 682.872

Stress components in a cross section for x = 100 mm

Select nodes in the cross section x = 100 mm

Utility Menu > Select > Entities ... > Nodes > By Location > X coordinates > > Min = 99, Max = 101 > From Full→ OK (Fig. 19) Utility Menu > Plot > Nodes

Define a path

Main Menu > General Postproc > Path Operations > Define Path > By Nodes pick the start and end nodes \rightarrow OK (Fig. 20) Define a path name: Path_1 \rightarrow OK (Fig. 21)

Map stress components

Main Menu > General Postproc > Path Operations > Map onto Path > Stress: $SX \rightarrow Apply > shear SXY \rightarrow Apply > von Mises SEQV \rightarrow OK$ (Fig. 22)

Select Entities Λ Nodes -By Location -X coordinates Y coordinates C Z coordinates Min.Max 99,101 From Full Fig. 19 C Reselect C Also Select Unselect Sele All Invert Sele None Sele Belo OK Apply Plot Replot

Cancel

Help

analytical solution:

$$au_{xy}\left(rac{l}{2},0
ight) = -15 ext{ MPa } ; au_{xy}\left(rac{l}{2},\pmrac{h}{2}
ight) = 0 ext{ MPa }$$

relative error: $\Delta \tau_{xy} \left(\frac{l}{2}, 0\right) = \frac{-14.861 - (-15)}{-15} = 0.9\%$

Select the entire model

Utility Menu > Select > Everything Utility Menu > Plot > Replot

List reactions

Main Menu > General Postproc > List Results > Reaction Solu > All Items \rightarrow OK (Fig. 26)

