1. Geometry of a quarter model of a thin plate with the notch r_{1} (Fig. 1):
a) create a rectangle (X - coordinates: 0 to $a+r_{1}, \mathrm{Y}$ - coordinates: 0 to $3 a+r_{1}, \mathrm{Fig} .2$)
b) display and move the working plane (X, Y, Z Offsets) : $a+r_{1}, 0,0$ (Fig. 3)
c) create a circle (outer radius: r_{1}) (Fig. 4)

d) subtract the circle from the rectangle (Fig. 5): (pick or enter base areas from which to subtract -> select the rectangle (-> ok), pick or enter areas to be subtracted -> select the circle (-> ok)
2. Choose a finite element: PLANE182 (Quad 4 node) with the plane stress option and the enhanced strain technology (Fig. 6) :
3. Define linear isotropic material properties: E (Young's modulus) and v (Poisson's ratio) (Fig. 7)
4. Save the database (Utility Menu>File>Save As..., *.db)
5. Define the discretisation density: calculate the element size on keypoints using the parameter m (from Tables 1 and 2, initial value of $m=1$) and mesh the plate (Fig. 8)
6. Save the mesh as an image (Plot> Elements, PlotCtrls> Redirect Plots-> To JPEG File ...)
7. Save in Table 1:

- numbers of finite elements (NOE) and nodes (NON) (Utility Menu>List>

Status> Global Status)

- the distance d between the two nodes close to the notch tip (Utility Menu>List>Picked Entities+) (Fig. 9)

8. Apply boundary conditions: symmetry conditions (Fig. 10) and pressure of - 10 MPa (Fig. 11)
9. Solve (Solution-> Solve-> Current LS)

10. Plot and save as an image a contour map of the displacement magnitude (Main Menu>General Postproc> Read Results> First Set, Main Menu> General Postproc> Plot Results> Contour Plot> Nodal Solu> DOF Solution> Displacement Vector sum 'USUM') and write the maximum value of USUM in Table 1.
11. Plot and save as images contour maps of stress components SX, SY, SXY and Von Mises stress SEQV (Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu>Stress ...)
12. Find stress components SX, SY, SXY at the node located at the notch tip (point B, Fig. 8) (Main Menu>General Postproc> Query Result> Subgrid Solu) and save the data in Table 1:
13. Decrease the value of m and repeat steps $5,6,7,9$ and 12.
14. Change a finite element to PLANE 183 (the 'Quad 8 node' element with mid-side nodes is a higher order version of PLANE 182)
15. Repeat steps 5, 7, 9 and 12 starting from $m=1$ and fill the Table 2.
16. Find and underline in the worksheet the optimal value of ' m ' separately for both element types. Consider the following criteria:

- normal stress (SX) at the notch tip near to zero,
- shear stress (SXY) at the notch tip near to zero,
- the number of nodes as small as possible.
(Final report should also include three graphs of $S X(d), S Y(d), S X Y(d)$ for both element types, where d is the distance shown in Fig. 9)

17. Perform FE analyses of plates with notches r_{1}, r_{2}, and r_{3}. Choose one type of a finite element (4-node or 8 -node) and the relevant value of m determined at point 16 . For each analysis write in the worksheet or save on the disc:

- numbers of nodes and elements,
- image of finite elements,

- contour map of the displacement magnitude (USUM),
- contour map of the equivalent Von Mises stress (SEQV),
- graph with distribution of the stress components between points A and B (SX, SY, SXY, SEQV). To plot the graph:
- select points A and B (Main Menu>General Postproc>Path Operations>Define Path>By Nodes (ok), Name= path1, nSets =30, nDiv=200)
- select stress components in sequence (Main Menu>General Postproc>Path Operations>Map onto Path (ok) the field 'Lab' can be left blank)
- select stress components to plot (Main Menu>General Postproc>Path Operations>Plot Path Item>On Graph) - calculation of a stress concentration factor α :

$$
\alpha=\frac{S Y_{B}}{p \cdot\left(\frac{a+r_{1}}{a}\right)} \quad \quad\left(r_{1}\right. \text { for all radii (see Fig. 12)) }
$$

18. Plot $\alpha(r)$ as a graph (Excel).
19. Perform analyses of a plate with the notch r_{1} for the plane strain and axis-symmetry conditions (Fig. 13). Use the same type of a finite element and m value chosen at point 17. Calculate α values for 3 different element options (to calculate α for the axis-symmetry case divide the stress by $p \cdot\left(\left(a+r_{1}\right) / a\right)^{2}$ instead of $\left.p \cdot\left(a+r_{1}\right) / a\right)$.

Fig. 13
20. Discuss results and write conclusions.

