
 
 

 

LECTURE 2 

POLYNOMIAL APPROXIMATION 

 

 

 

 
 

 

             



FORMULATION OF THE LEAST-SQUARES APPROXIMATION PROBLEM 
 

Consider the given set of the node 

 

,{( ), ,.., }k kx y k 0 m  

 

Typically, the number m is large, so the 

standard interpolation by the global 

polynomial is not sensible. Such 

polynomial would most likely exhibit rapid 

oscillations and it would be also extremely 

sensitive to small (and inevitable) 

inaccuracies in the input data.  

 

 

We will take a different approach. Our aim is to determine a function will capture 

“the general trend” (red line in the plot) presented by the given set, and such that its 

plot is – in a certain sense – close to all nodes.  
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To this aim, we choose the prescribed finite set of the basic functions (e.g., polynomials, 

trigonometric functions, others)  

 

{ ( ), ,.., }k x k 0 n   
 

and then look for the function in the form of the sum 
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such that the following quantity is minimal 
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Such problem is called the approximation in the sense of the least squares. 

 

 

 



Necessary conditions for the minimum of the function R are 
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Then, the linear system for the unknown coefficients { , ,.., }ja j 0 n  is obtained as 

follows 
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This system can be written is the matrix/vector form as follows  Ma = z, where   
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In particular, the basic functions can be chosen as the monomials  
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Then 

 

 

 

Note that the matrix M can be expressed as 

 

                                                            
TM W W  

 

where the elements of the matrix  W are   

 

 

 

Indeed, we have 
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Also, the right-hand side vector  z can be expressed as 

 

, [ , ,..., ]T T

0 1 my y y z W y y  

 

This form of the obtained linear system is not accidental. In fact, the polynomial 

approximations problem can be viewed  as the over determined interpolation problem. 

 

We will take an algebraic rather that the analytical approach. Consider an over determined 

linear system in the form of 

  
, dim( ) ( , ) ,m n m n  Ax b A  

 

This means that the number of equations m is larger than the number of the unknowns n 

(the matrix A is rectangular). Usually, so the above system of equations is – there is no 

vector x in Rn such that all equations are simultaneously satisfied. Yet, there is a 

possibility to re-define the problem of determination of the vector x in such a way, that 

there exists a solution. Moreover, if the rank of the matrix A is equal n (i.e., it is the 

maximal possible) then the solution is unique!  

 

 



 

The idea is simple: we will find the vector x which makes the residual vector 

 
 r b Ax  

 

as small (short) as possible. In other words, the Euclidean norm of the vector r  

 

: ...2 2

1 m2
r r r    

must be minimal. 

 

To this aim, we will refer to the concept of the range of the matrix A. The range of A is 

defined as the following set of vectors (the linear subspace of R
m

) 
 
 

( ) : { : , }m nrange R R   A y y Ax x  
 

Next, we also define the kernel of the transpose matrix A
T
. The kernel of A

T
 is the 

following set of vectors (also the linear subspace of R
m

) 
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Now, we claim that these two subspaces in  R
m

  are orthogonal, i.e. 
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The proof of this crucial fact goes as follows.  First, we note that 
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Then the scalar product of the vectors  v and  w can be calculated 
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The conclusion follows from the fact that the choice of v and w is arbitrary. 

 



 

Note that (see the picture) that the 

length (we say – the norm) of the 

residual vector r is the smallest if this 

vector is perpendicular (we say – 

orthogonal) to the range(A). But it 

means that the minimal residual 

vector  r belongs to the ker(A
T
).  

 

 

Thus, we have 
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In the context of the polynomial approximation problem, we can see that A = W. On 

the other hand, it is clear that the over determined linear system  Wa y  corresponds 

exactly to the “impossible” interpolation conditions 
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The above mentioned method to solve the polynomial approximation problem is called the 

method of the normal equations.  

 

In the remaining part of these notes, we present an alternative and computationally more 

effective method of the orthogonal polynomials.  

 

 

 

 

 

 

 

 



METHOD OF THE ORTHOGONAL POLYNOMIALS 
 

 

For the given sets of the nodes, one can define the inner (scalar) product of the functions 

as follows  

, : ( ) ( )
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i j i k j k

k 0

x x   
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We say that the basic functions are (discretely) orthogonal on the given set of the nodes if 

and only if 

, ,i j 0 i j   
 

 

Using the orthogonal functions is advantageous because the corresponding matrix M of 

the system of the normal equations is purely diagonal 
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This means that the equations of this system are not coupled and they can be solved 

separately one by one. Indeed, one gets 
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The question remains how to construct efficiently orthogonal basic functions for a given 

set of the nodes. Since such options is particularly interesting, we will explain how to 

generate an orthogonal set of polynomials. 

 

The computational procedure is recursive. It means that consecutive polynomials will 

be constructed by the use of those previously defined.  

 

 



 

In order to initiate such procedure, two first polynomials must be prescribed. These 

polynomials are 

( )0q x 1      ,     ( )1 1q x x    

 

The number α1  is selected in order to assure that q0 and q1 are orthogonal: 
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Higher-order polynomials are obtained via two-point recurrence as follows 
 
 

( ) ( ) ( ) ( )j 1 j j 1 j j j 1q x xq x q x q x     
 

 

 

The coefficients αj+1 and βj are chosen to assure that the polynomial qj+1 is orthogonal to 

the previously defined polynomials  qj and  qj-1:  
 
 

, , ,j 1 j j 1 j 1q q 0 q q 0   
 

 

 



 

These conditions lead to the following formulas: 
 

( ) ( ) ( )
, ,

,
, ,

( ) ( )

m m
2

k j k k j 1 k j k
j j j j 1k 0 k 0

j 1 jm m
2 2j j j 1 j 1
j k j 1 k

k 0 k 0

x q x x q x q x
xq q xq q

q q q q
q x q x

 


 


 


 

   
 

 
 

 

The crucial question arises: how come that  , , , ,..,j 1 iq q 0 i 0 1 j 2     ?! 

 

Surprisingly enough, this property holds “automatically”! To see this, we will calculate the 

inner product of the polynomial qj+1 and qk for k < j-1: 
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Final form of the approximating polynomial can be written as 
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For efficient and stable method of evaluation of the polynomial f(x) see the Clenshaw 

recurrence formula (see, for instance, Numerical Recipes in C++, 3
rd

 Ed., p. 222) 


