

LECTURE 2

POLYNOMIAL APPROXIMATION

FORMULATION OF THE LEAST-SQUARES APPROXIMATION PROBLEM

Consider the given set of the node

,{(), ,.., }k kx y k 0 m

Typically, the number m is large, so the

standard interpolation by the global

polynomial is not sensible. Such

polynomial would most likely exhibit rapid

oscillations and it would be also extremely

sensitive to small (and inevitable)

inaccuracies in the input data.

We will take a different approach. Our aim is to determine a function will capture

“the general trend” (red line in the plot) presented by the given set, and such that its

plot is – in a certain sense – close to all nodes.

x0
xmxj

y0

yj
ym

y=f(x)

x

y

0

To this aim, we choose the prescribed finite set of the basic functions (e.g., polynomials,

trigonometric functions, others)

{ (), ,.., }k x k 0 n 

and then look for the function in the form of the sum

() () () ... () ()
n

0 0 1 1 n n j j

j 0

f x a x a x a x a x   


    

such that the following quantity is minimal

(, ,...,) [()] [()] min
m m n

2 2

0 1 n k k j j k k

k 0 k 0 j 0

R R a a a f x y a x y
  

       

Such problem is called the approximation in the sense of the least squares.

Necessary conditions for the minimum of the function R are

, ,..,
i

R
0 i 0 n

a


 



Then, the linear system for the unknown coefficients { , ,.., }ja j 0 n is obtained as

follows

() () , , ,..,

[() ()] ()

m n

i k j j k k

k 0 j 0i

n m m

i k j k j k i k

j 0 k 0 k 0

R
2 x a x y 0 i 0 1 n

a

x x a y x

 

  

 

  

 
    

  





 

  

This system can be written is the matrix/vector form as follows Ma = z, where

 [, ,..,]T

0 1 na a aa ,

() () , , , ,..,

() , , ,..,

m

ij i k j k ji

k 0

m

i k i k

k 0

M x x M i j 0 1 n

z y x i 0 1 n

 







  

 





In particular, the basic functions can be chosen as the monomials

() , () , ..., () , ..., ()j n

0 1 j nx 1 x x x x x x      

Then

Note that the matrix M can be expressed as

TM W W

where the elements of the matrix W are

Indeed, we have

() () () () () ()
m m m

T T i j

ij ik kj ki kj k k ij

k 0 k 0 k 0

x x
  

     W W W W W W M

, 0,..., , 0,...,j

kj kW x k m j m  

, , , ,.., , , , ,..,
m m

i j i

ij k i k k

k 0 k 0

M x i j 0 1 n z y x i 0 1 n

 

    

Also, the right-hand side vector z can be expressed as

, [, ,...,]T T

0 1 my y y z W y y

This form of the obtained linear system is not accidental. In fact, the polynomial

approximations problem can be viewed as the over determined interpolation problem.

We will take an algebraic rather that the analytical approach. Consider an over determined

linear system in the form of

, dim() (,) ,m n m n  Ax b A

This means that the number of equations m is larger than the number of the unknowns n

(the matrix A is rectangular). Usually, so the above system of equations is – there is no

vector x in Rn such that all equations are simultaneously satisfied. Yet, there is a

possibility to re-define the problem of determination of the vector x in such a way, that

there exists a solution. Moreover, if the rank of the matrix A is equal n (i.e., it is the

maximal possible) then the solution is unique!

The idea is simple: we will find the vector x which makes the residual vector

 r b Ax

as small (short) as possible. In other words, the Euclidean norm of the vector r

: ...2 2

1 m2
r r r  

must be minimal.

To this aim, we will refer to the concept of the range of the matrix A. The range of A is

defined as the following set of vectors (the linear subspace of R
m

)

() : { : , }m nrange R R   A y y Ax x

Next, we also define the kernel of the transpose matrix A
T
. The kernel of A

T
 is the

following set of vectors (also the linear subspace of R
m

)

ker() { : }T m T nR R   A y A y 0

Now, we claim that these two subspaces in R
m

 are orthogonal, i.e.

() ker()
() ker() (,)

T

m
T

j j
range

j 1

range v w 0
 



     
v A w A

A A v w

The proof of this crucial fact goes as follows. First, we note that

()
nR

range


   
p

v A v Ap

Then the scalar product of the vectors v and w can be calculated

(,) (,) () () ()

() () (,) (,)

m m n n m

j j jk k j jk j k

j 1 j 1 k 1 k 1 j 1

n m n
T

jk j k k k

k 1 j 1 k 1

w a p w a w p

a w p p 0

    

  

    

    

    

   T

v w Ap w Ap

A w p A w p 0

The conclusion follows from the fact that the choice of v and w is arbitrary.

Note that (see the picture) that the

length (we say – the norm) of the

residual vector r is the smallest if this

vector is perpendicular (we say –

orthogonal) to the range(A). But it

means that the minimal residual

vector r belongs to the ker(A
T
).

Thus, we have

min () ker()

()

m
2 T

k2
k 1

T T

r range

0



     



   



T

r r A r A

A b Ax A Ax A b

In the context of the polynomial approximation problem, we can see that A = W. On

the other hand, it is clear that the over determined linear system Wa y corresponds

exactly to the “impossible” interpolation conditions

() , , ,...,
n n

k

j j j k jk k

k 0 k 0

y f x x a W a j 0 1 m
 

    

The above mentioned method to solve the polynomial approximation problem is called the

method of the normal equations.

In the remaining part of these notes, we present an alternative and computationally more

effective method of the orthogonal polynomials.

METHOD OF THE ORTHOGONAL POLYNOMIALS

For the given sets of the nodes, one can define the inner (scalar) product of the functions

as follows

, : () ()
m

i j i k j k

k 0

x x   




We say that the basic functions are (discretely) orthogonal on the given set of the nodes if

and only if

, ,i j 0 i j   

Using the orthogonal functions is advantageous because the corresponding matrix M of

the system of the normal equations is purely diagonal

() ,

,

m
2

i k

k 0ij

x i j
M

0 i j







 
 



This means that the equations of this system are not coupled and they can be solved

separately one by one. Indeed, one gets

() () , ,..,

()

()

m m
2

i k i k i k

k 0 k 0

m

k i k

k 0
i m

2

i k

k 0

x a y x i 0 n

y x

a

x

 





 





 
  

 





 





The question remains how to construct efficiently orthogonal basic functions for a given

set of the nodes. Since such options is particularly interesting, we will explain how to

generate an orthogonal set of polynomials.

The computational procedure is recursive. It means that consecutive polynomials will

be constructed by the use of those previously defined.

In order to initiate such procedure, two first polynomials must be prescribed. These

polynomials are

()0q x 1 , ()1 1q x x  

The number α1 is selected in order to assure that q0 and q1 are orthogonal:

, ()
m m

1
0 1 k 1 1 km 1

k 0 k 0

q q 0 x 0 x 


 

      

Higher-order polynomials are obtained via two-point recurrence as follows

() () () ()j 1 j j 1 j j j 1q x xq x q x q x     

The coefficients αj+1 and βj are chosen to assure that the polynomial qj+1 is orthogonal to

the previously defined polynomials qj and qj-1:

, , ,j 1 j j 1 j 1q q 0 q q 0   

These conditions lead to the following formulas:

() () ()
, ,

,
, ,

() ()

m m
2

k j k k j 1 k j k
j j j j 1k 0 k 0

j 1 jm m
2 2j j j 1 j 1
j k j 1 k

k 0 k 0

x q x x q x q x
xq q xq q

q q q q
q x q x

 


 


 


 

   
 

 

The crucial question arises: how come that , , , ,..,j 1 iq q 0 i 0 1 j 2    ?!

Surprisingly enough, this property holds “automatically”! To see this, we will calculate the

inner product of the polynomial qj+1 and qk for k < j-1:

()

, , , , , ,

i0 0 xq x has 0 for each p j
order i 1

i 1 j

j 1 i j i j 1 j i j j 1 i j i p

j

j p

p 0

q q xq q q q q q q xq q q 0  
 

  


 

 

     

Final form of the approximating polynomial can be written as

() () () ()
n m m

2

k j k j k j

j 0 k 0 k 0

f x y q x q x q x
  

 
  

 
  

For efficient and stable method of evaluation of the polynomial f(x) see the Clenshaw

recurrence formula (see, for instance, Numerical Recipes in C++, 3
rd

 Ed., p. 222)

