METODY OBLICZENIOWE W BIOMECHANICE Laboratorium: remodelling

1. WPROWADZENIE

W wyniku działających obciążeń zmianie ulega gęstość pozorna kości p. Zmiany te zachodzą pod wpływem stymulatora s, którym jest energia właściwa odkształcenia. Szybkość zmiany gęstości jest opisana zależnością (1).

$$\frac{d\rho}{dt}$$

$$(1-d)k \quad k$$

$$\frac{d\rho}{dt} = \begin{cases} B \cdot [s - (1+d) \cdot k] & dla \quad s \rangle (1+d)k \\ 0 & dla \quad (1-d)k \le s \le (1+d)k \\ B \cdot [s - (1-d) \cdot k] & dla \quad s \land (1-d)k \end{cases}$$
(1)

Współczynniki d i k określają rozmiar i położenie strefy martwej (wartości stymulatora, dla którego nie zachodzą zmiany w tkankach).

Energia właściwa odkształcenia jest zdefiniowana jako:

$$s = \frac{SED}{\rho}$$
(2)

gdzie SED to gęstość energii odkształcenia obliczana jako iloraz energii odkształcenia (SE) i objętości (V):

$$SED = \frac{SE}{V}$$
(3)

Obliczenia prowadzone są w sposób iteracyjny, a gęstość zmienia się wg wzoru:

gdzie ρ_{i+1} to nowa wartość gęstości, ρ_i to gęstość z poprzedniego kroku obliczeń, a Δt to rozmiar kroku czasowego.

$$\rho_{i+1} = \rho_i + \frac{d\rho}{dt} \cdot \Delta t \tag{4}$$

Z gęstością pozorną kości związana jest bezpośrednio sztywność kości opisana przez moduł Younga:

$$\mathbf{E} = \boldsymbol{\alpha} \cdot \boldsymbol{\rho}^{\boldsymbol{\beta}} \tag{5}$$

2. ROZWIĄZYWANE ZAGADNIENIE

Prześledzić zmiany zachodzące w prostokątnym obszarze o rozmiarach ax2a (a=100) podpartym na jednej z krawędzi i obciążonym siłą skupioną P=100 na środku przeciwległej ścianki (rys. 2).

Pierwotna gęstość obszaru $\rho_0=0,8$. Parametry sterujące procesem przebudowy są następujące: B=1, k=0,25, d=0 (strefa martwa zredukowana do punktu), $\Delta t=1$.

Ze względów fizjologicznych (i numerycznych) graniczne dopuszczalne wartości gęstości wynoszą $\rho_{min}=0.05$ i $\rho_{max}=2$.

Współczynniki wiążące gęstość i moduł Younga to α =400 i β =2. Współczynnik Poissona nie ulega zmianom jest równy v=0,3.

3. PRZEBIEG ANALIZY NUMERYCZNEJ

A. Wprowadzenie parametrów geometrycznych – wszystkie wielkości wykorzystywane w analizie (podane w pkcie 2. plus dodatkowo liczba iteracji remodellingu ir i liczba podziałów na krótszej krawędzi 1p) wpisujemy w pole komend i zatwierdzamy enterem.

File Zelect Fist Flot FlotZulls WorkFlane Balameters Wacro MeUnctuls Helb	
	🗉 🗗 🛃 🗉
ANSYS Toolbar	

B. Wprowadzenie pierwotnych właściwości materiałowych. Obliczenie pierwotnego modułu
 Younga. Jeśli pierwotnej gęstości odpowiada parametr r0, to wpisujemy w linię komend:
 E0=alfa*r0**beta

C. Stworzenie tablic gęstości, modułów Younga, gęstości energii odkształcenia i stymulatora dla elementów skończonych:

Górne menu→Parameters→Array parameters→Define/Edit

Array Parameters				
Currently Defined Array Parameter	rs: (Arrays larger than 31	D not shown)	\Lambda Add New Array Parameter	
Parameter	Type array	Dimensions 400 x 1	[*DIM] Par Parameter name Type Parameter type I,J,K No. of rows,cols,planes For Type="TABLE" only: Var1 Row Variable Var2 Column Variable Var3 Plane Variable	r • Array • Table • Character Array le 1 1
	.dd		ок Арріу	Cancel Help

Rozmiary tablic odpowiadają liczbie elementów, czyli 1e=1p*1p*2

Wypełnienie tablic gęstości i sprężystości pierwotnymi wartościami (w pętli po wszystkich elementach):

```
*do,i,1,le,1
E(i)=E0
r(i)=r0
*enddo
```

D. Stworzenie oddzielnych materiałów dla każdego elementu skończonego i odpowiednie ich przyporządkowanie:

```
*do,i,1,le,1
!stworzenie materiału
MP,EX,i,E(i)
MP,PRXY,i,0.3
*enddo
```

E. Budowa modelu geometrycznego i podział na elementy skończone (element PLANE182, siatka regularna kwadratowa, liczba podziałów na krótszych krawędziach 1p, na dłuższych 2*1p).

F. Przyporządkowanie każdemu elementowi jego własnego materiału.

```
*do,i,1,le,1
EMODIF,i,MAT,i,
*enddo
```

G. Zadanie warunków podparcia i obciążenia (patrz rys.2).

H. Zapisanie bazy danych.

I. Stworzenie procedury realizującej przebudowę (piszemy ją w pliku tekstowym, potem możemy jego zawartość wkleić w okno komend lub wczytać: Górne menu→File→Read Input from→nasz_plik.txt)

```
!procedura wykonuje obliczenia w zadeklarowanej liczbie kroków ir
/UIS,MSGPOP,3 !wyłączenie wyskakujących okienek ostrzeżeń
*do,i,1,ir,1
 !otwarcie bloku Solution
/SOL
 !wykonanie obliczeń
SOLVE
 !otwarcie Postprocesora
/POST1
 !odczytanie energii odkształcenia elementów
ETABLE, ,SENE,
 !odczytanie objętości elementów
ETABLE, ,VOLU,
 !obliczenie gestości energii odkształcenia
SEXP,SED,SENE,VOLU,1,-1,
 !zapis gestości energii odkształcenia do tablicy
*VGET, sed, ELEM, 1, ETAB, SED, ,2
 !obliczenie wartości stymulatora dla elementów
*do,j,1,1e,1
 s(j)=sed(j)/r(j)
*enddo
 !właściwa procedura realizująca przebudowę
 !petla po wszystkich elementach
/PREP7
*do,j,1,1e,1
  !obliczenie szybkości zmiany gęstości elementu
 *if,s(j),gt,(1+d)*k,then
  roprim=B*(s(j)-(1+d)*k)
  *elseif,s(j),lt,(1-d)*k
  roprim=B^*(s(j)-(1-d)^*k)
  *else
  roprim=0
  *endif
  !modyfikacja wartości gęstości
 r(j)=r(j)+roprim*dt
  !zabezpieczenie przed przekroczeniem wartości granicznej
 *if,r(j),lt,rmin,then
  r(j)=rmin
  *elseif,r(j),gt,rmax
  r(j)=rmax
  *endif
  !nowa wartość modułu Younga
 E(j)=alfa*r(j)**beta
  !modyfikacja materiału przyporządkowanego elementowi
 MPDE,all,j
 MP, EX, j, E(j)
 MP, PRXY, j, 0.3
*enddo
*enddo
```

W efekcie zadziałania powyższego kodu dostaniemy jedynie zmodyfikowany rozkład gęstości po ir iteracjach. Jeśli chcemy wiedzieć jak proces przebiegał w czasie należałoby np. zapisywać wartości z każdego kroku, albo najprościej śledzić je graficznie – w każdym kroku generować plik pokazujący rozkład interesującej nas wielkości.

Niestety Ansys nie daje możliwości bezpośredniego wyświetlenia wielkości, które są związane z elementami "zewnętrznie", a nie programowo. To ograniczenie można ominąć np. zadając elementom fikcyjną temperaturę o wartości odpowiadającej interesującego nas parametru i wyświetlając jej rozkład. Przypisanie "temperatury" o wartości gęstości r(j) j-temu elementowi (funkcja działa w bloku preprocesora i solution) ma postać:

BFE,j,TEMP,1,r(j), , ,

Wyświetlenie rozkładu temperatur:

EPLOT
/CONT,1,9,rmin, ,rmax
/PBF,TEMP, ,1

Pozostaje jeszcze przekierowanie widoku do pliku (zrzut do JPG-a):

/SHOW,JPEG,,0 /REPLOT /SHOW,CLOSE

Powyższe elementy należy wstawić w odpowiednie miejsca kodu przebudowy.

4. ZADANIA DO WYKONANIA

A. Model podstawowy (parametry jak podane wyżej).

B. Obliczenia dla zwiększonej gęstości siatki.

C. Obliczenia dla zmniejszonego kroku czasowego.

D. Obliczenia dla strefy martwej o niezerowej długości d $\neq 0$, np. d=0,25

E. Obliczenia dla innej wartości początkowej gęstości po

F. Zmodyfikować procedurę tak, aby było możliwe śledzenie zmian w czasie gęstości i stymulatora dla każdego elementu.