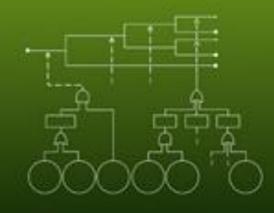


RISK and RELIABILITY in AVIATION


Marek Matyjewski

Books

Tadeusz Szopa

Niezawodność i bezpieczeństwo

Oficyna Wydawnicza Politechniki Warszawskiej

Oficyna Wydawnicza Politechniki Warszawskiej

Tadeusz Szopa

Niezawodność i bezpieczeństwo

2009

2016

Contents of the course:

Introduction
Risk definitions and measures
Reliability
Human Reliability
Risk analysis

Safety engineering

M-T-E system

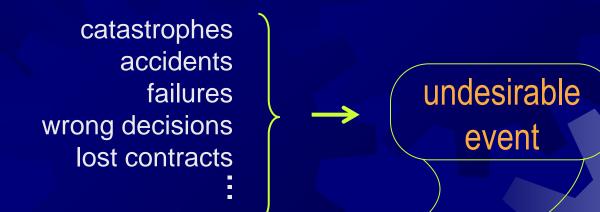
Man

Technology Environment

System – an integrated composite of people, products, and processes that provide a capability to satisfy a stated need or objective. (MIL-STD882D)

Loss in M-T-E system

Г


C-T-O

Ε

Μ

Categories of loss (consequences)

Loss: human (health & life) material (possessions, buildings) national heritage environment opinion and trust financial

Loss

 Individual (probability of loss or injury)
 Collective (number of casualties)

Example:

Individual loss – probability of death in traffic accident in Poland (2014) 8 · 10⁻⁵

Collective loss – 3202 fatalities

FAR

Fatal Accident Rate

Measure of the risk level

FAR is statistically expected number of accidental deaths per 100 million (**10**⁸) exposed hours

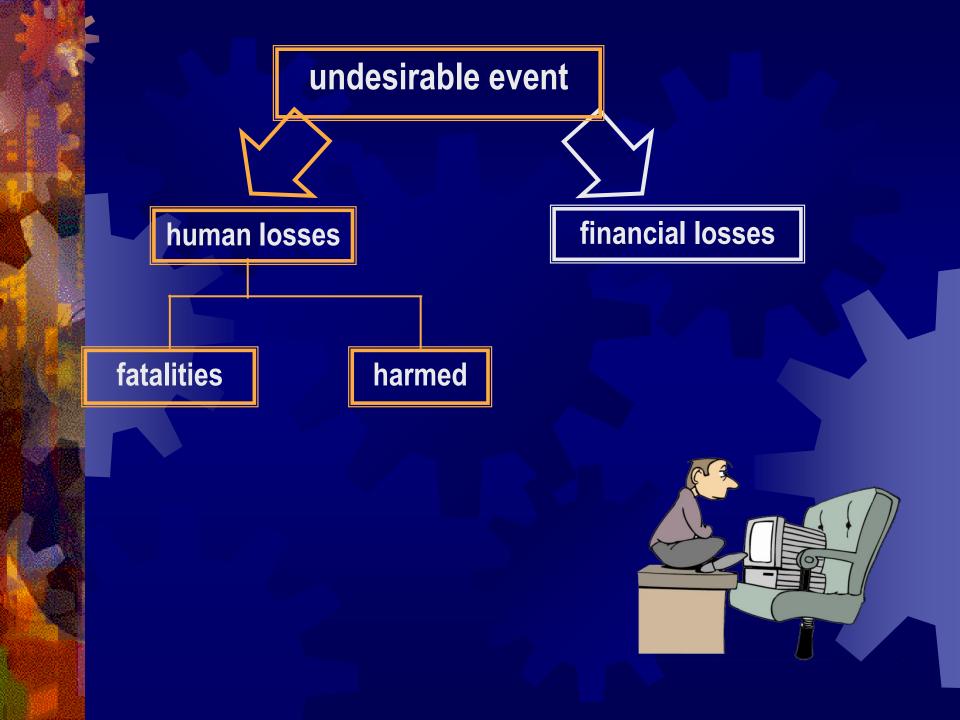
1400 persons lifetime work

Observed FAR

Number of fatalities per 100 million person-hours for different activities, 1981-1986 Persons in the age range 15-69 years

Activity	Observed FAR
ALL OCCUPATIONAL ACTIVITIES	2.5
ALL TRAVELLING	27.0
TIME SPENT IN THE HOME	1.0
ACTIVITIES ELSEWHERE	8.2
ALL DISEASES	44.0
SUICIDE	2.0

Activity	Observed FAR
ALL OCCUPATIONAL ACTIVIT	IES 2.5
Agriculture and forestry	2.3
Fishing	63.0
Oil activities	19.0
Industry	1.1
Service	1.5
Railway transport	6.2
Shipping	11.0
Aviation	50.0
ALL TRAVELLING	27.0
Travelling on roads	27.0
Pedestrians	14
Cyclists	28.0
Motorcyclists	280.0
Car drivers	25.0
Car passengers	29.0
Travelling by train	4.7
Travelling by ship	9.1
Domestic air services	56.0


Modelling of loss

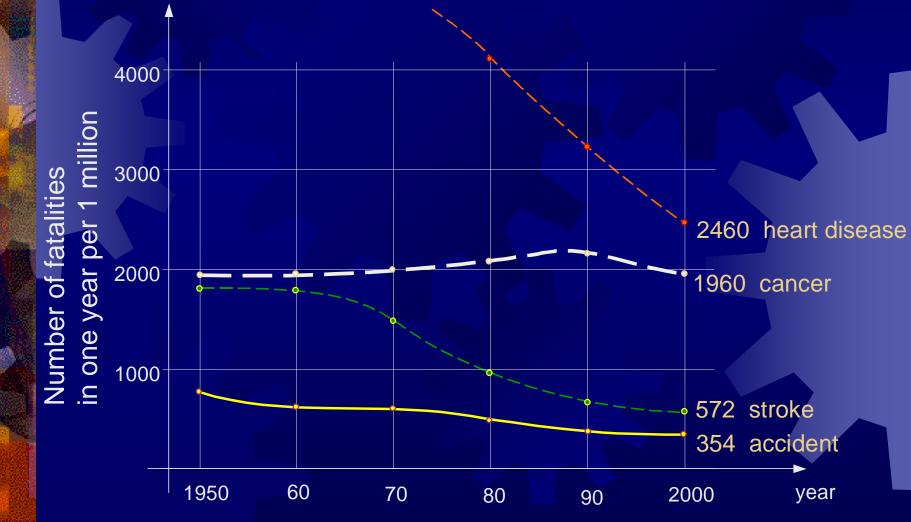
employee employer insurer county state

considered category of loss

Loss

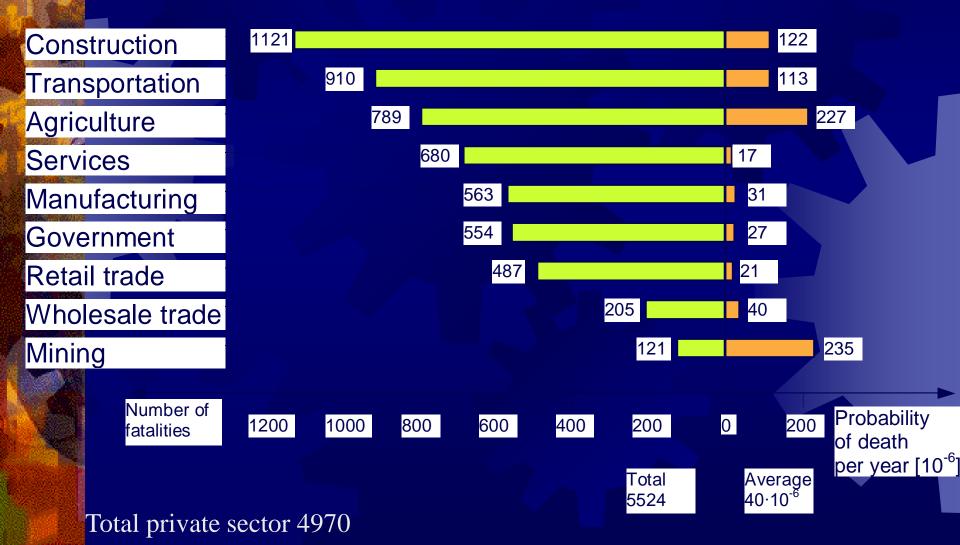
• method for measure and modelling of loss

Number of victims

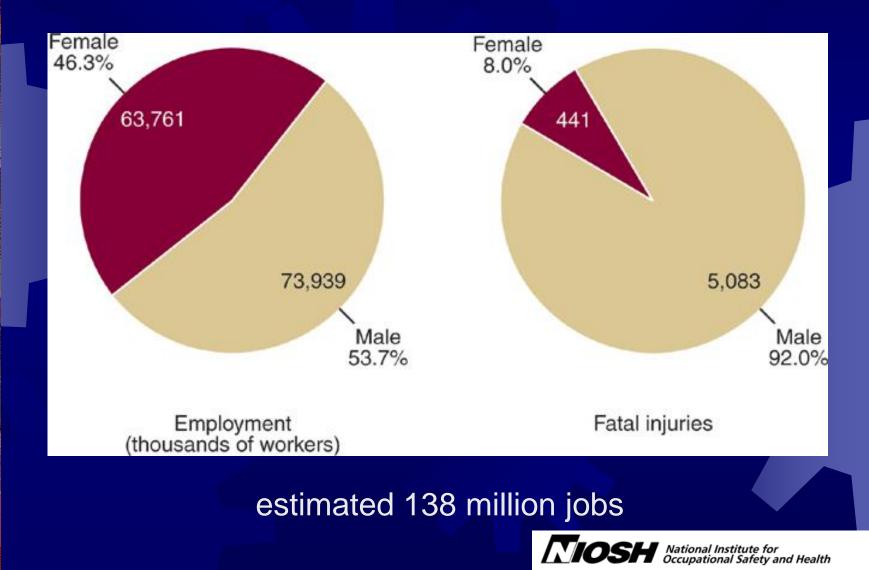

	Number of fatalities in 1 year per 1 million inhabitants									
Kind of accident	Swe	den	Great	Britain	Geri	many		Pol	and	_
	1985	1998	1984	1998	1987	1998	1989	1994	1999	2000
At home			100		120					
On roads	98	33	100	59	120	92	152	178	174	163
Travelling by air	3,0		1,2				0,4	0,2		
Travelling by train			1,7							
At work	11	10	23	3	18	16	26	25	20	18
Suicides			90					143	131	128
Fires	12		13					14	14	13
Murders	7							30	28	33
Drownings	13		6				10	27	21	14
Lightning struck	0,1		0,1							
Disease from tobacco use										2200

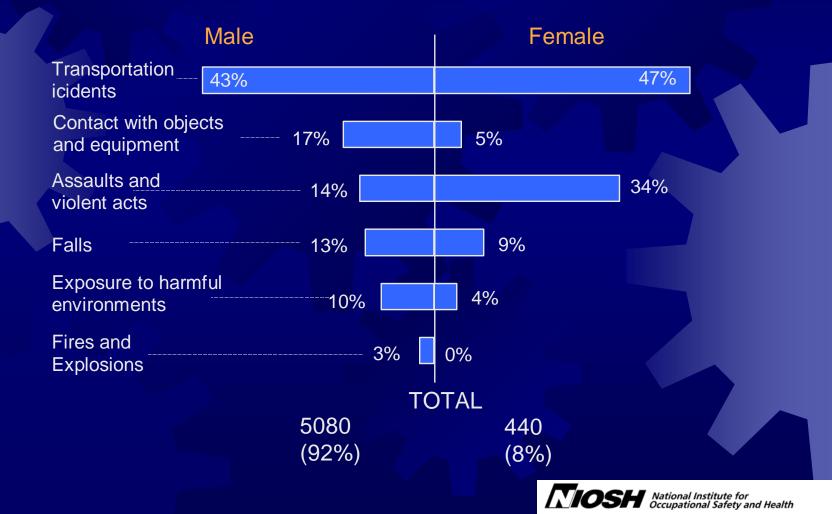
Average losses in 1992-2011

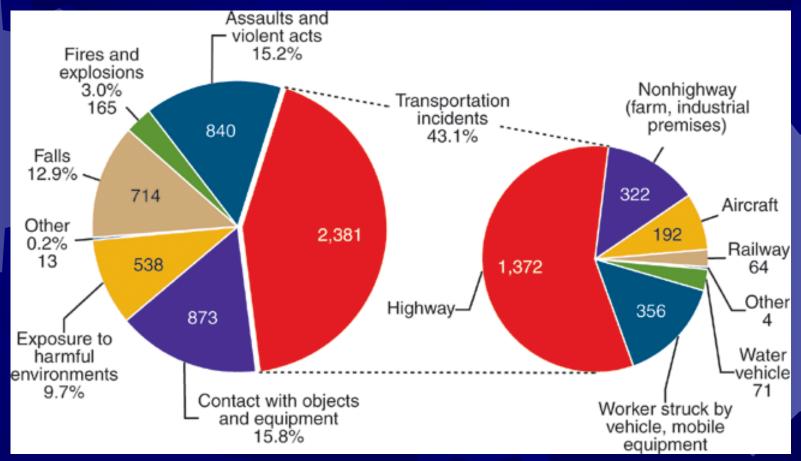
Type of loss	Natural [Disasters	Technical Disasters		Natural & Technical (combined)	
measure	World	Europe	World	Europe	USA	PL
Number of fatalities in one year per 1 million inhabitants	13	10	1,4	1,0	1,8	2,7
Number of victims in one year per 1 million inhabitants	36 000	2120	17	8,6	85700	460
Number of fatalities in 1 accident	250	166	33	27		
Number of victims in 1 event	700 000	30 000	415	200		


Number of fatalities

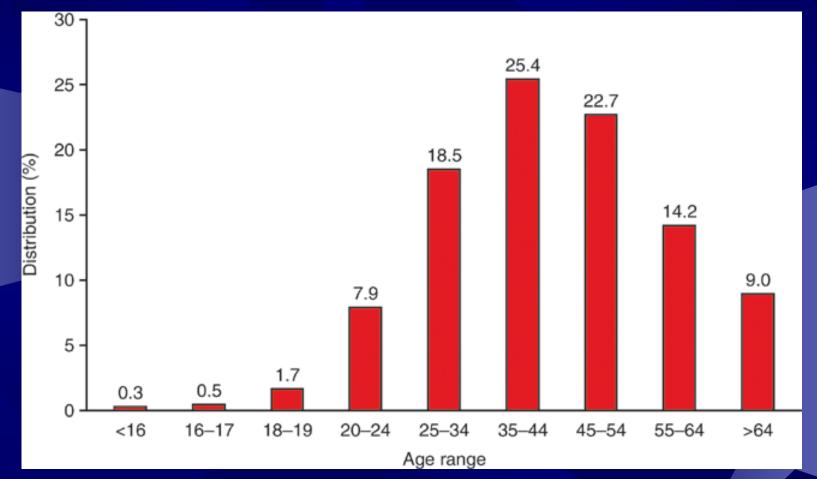
per 1 million population




Distribution and number of fatal occupational injuries by industry sector


Employment 2002 and fatality profiles by sex

Distribution of fatal occupational injuries by sex of worker and event or exposure 2002

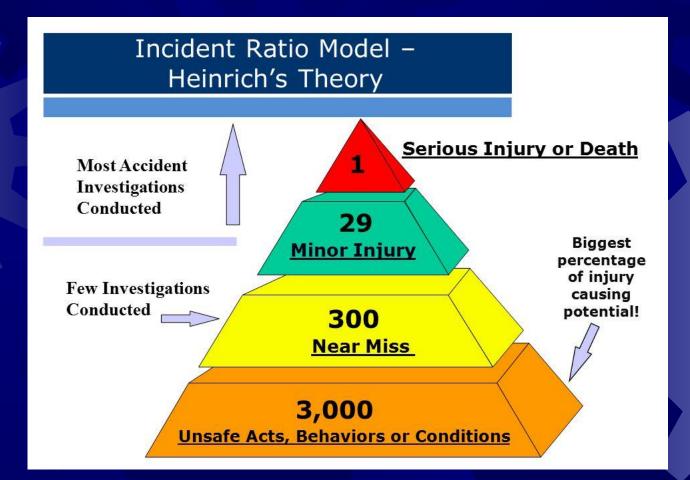


Distribution and number of fatal occupational injuries by event or exposure

highway fatalities accounted for 24.9% of all occupational fatalities

Distribution of fatal occupational injuries by age of worker 2002

Two-thirds of all fatally injured workers were aged 25–54

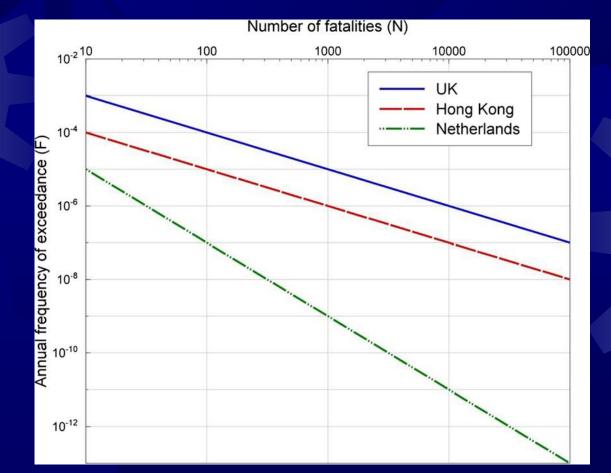

Consequences

Near miss events

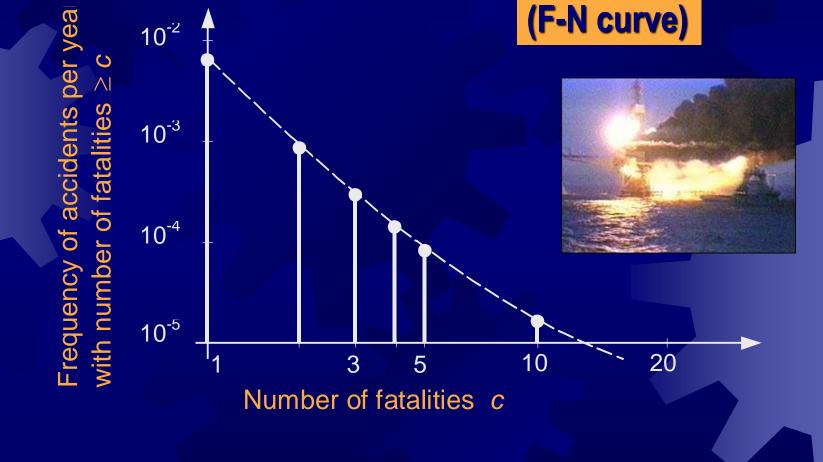
Accidents – frequent events, small loss Disasters – rare events, big loss

Heinrich's Pyramid

Measure of human losses

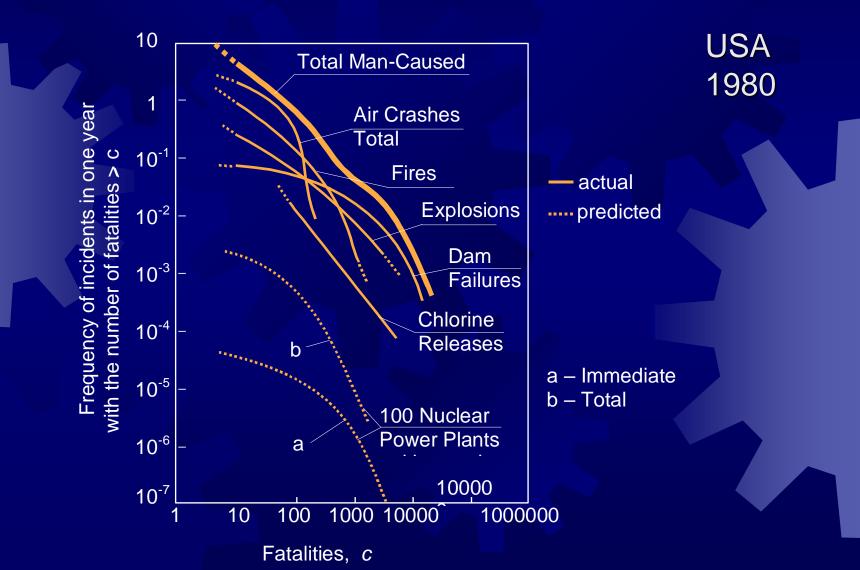


 mean values
 values taking into account a scatter of random losses



F-N curve

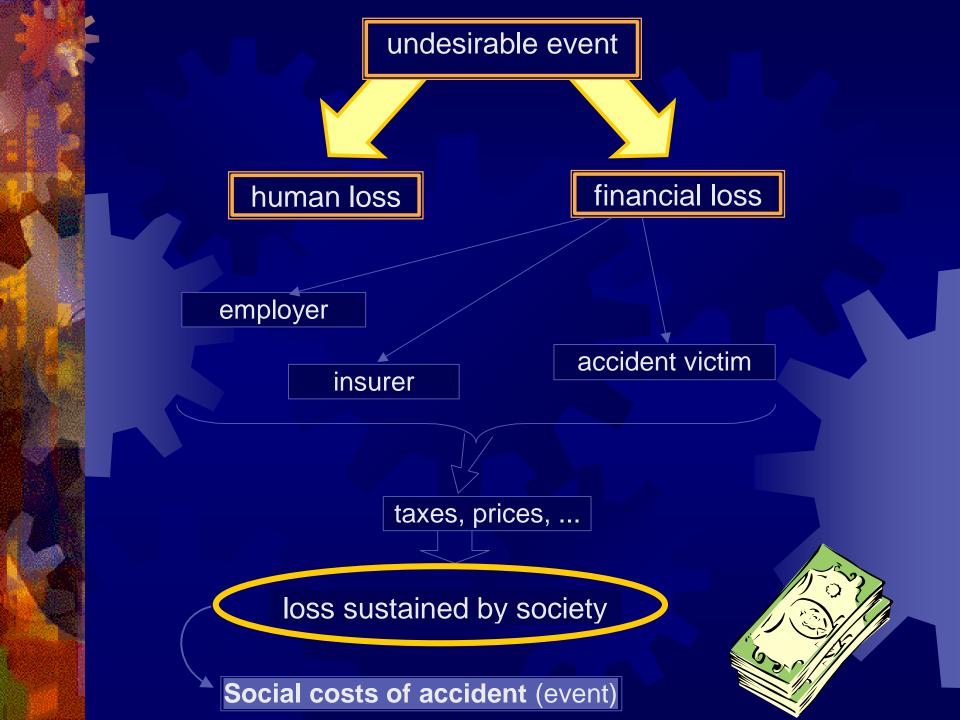
A plot of cumulative frequency versus consequences. Often expressed as number of fatalities.


Loss of life on an offshore platform

F – accident frequency

N – loss of life

Human loss due to technical disasters



Workplace Injury in 1996

Rates of Fatal and of Over 3 day injury per 100,000 workers

Country	Rate of Fatal Injury	Rate of Over 3 day injury		
USA	2.7	3000		
EU Average	3.6	4200		
Belgium	5.5	5100		
Austria	5.4	3600		
Italy	4.1	4200		
Greece	3.7	3800		
France	3.6	5000		
Germany	3.5	5100		
Ireland	3.3	1500		
Denmark	3.0	2700		
Netherlands	2.7	4300		
Sweden	2.1	1200		
Great Britain	1.9	1600		
Finland	1.7	3400		

Costs of job accidents

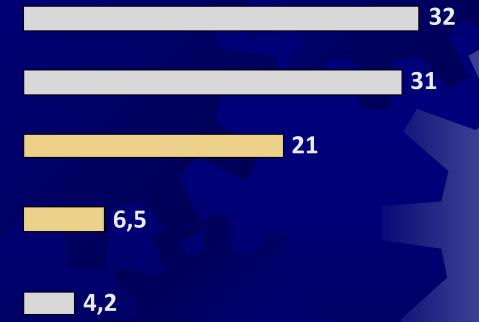
(1÷3)% GNP (Gross National Product) in Poland (7÷21) billion zł (PLN) 115 thousand accidents (2001 r.) average cost of an accident: ~ 87,000 zł • in USA \rightarrow \$27,000 wide range of financial loss cost of fatal accident >> cost of non-fatal accident

Estimated Number and Medical Costs of Occupational Injuries 2007

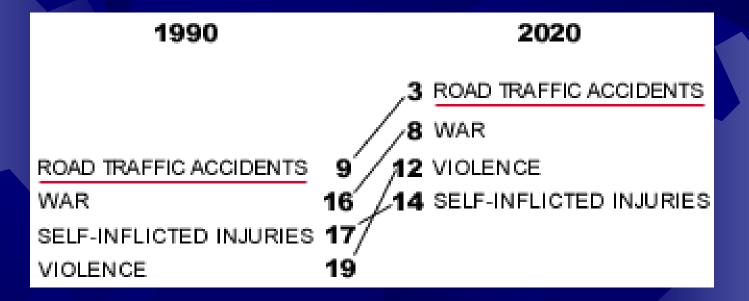
Category	Number and Percentage (of column) of Injuries	Total Medical Costs (in \$billions) and Percentage (of column)	Average Medical Costs per Injury		
	injunes				
Nonfatal injuries					
Injuries with no days away from work	6,084,086 (71.0%)	\$5.69 (12.3%)	\$935		
Injuries with 1 to 4 days away from work	934,049 (10.9%)	\$0.87 (1.9%)	\$935		
Temporary total disabilities	1,020,181 (11.9%)	\$8.21 (17.7%)	\$8,046		
Permanent partial disabilities	512,438 (6.0%)	\$25.58 (55.3%)	\$49,925		
Permanent total disabilities	8208 (<0.1%)	\$5.59 (12.1%)	\$681,615		
Total for nonfatal injuries	8,558,962 (99.9%)	\$45.95 (99.3%)	\$5,369		
Fatal injuries	5657 (<0.1%)	\$0.31 (0.7%)	\$55,595		
Total for nonfatal and fatal injuries	8,564,619	\$46.26	\$5,401		

Sources: Biddle 2009; NCCI 2008; U.S. Bureau of Labor Statistics 2010a, 2010b, 2010c, 2010d, 2011a.

Accidents costs


In USA costs of all accidents exceed 10% of GNP

Social financial losses in Poland (social costs) in billion PLN

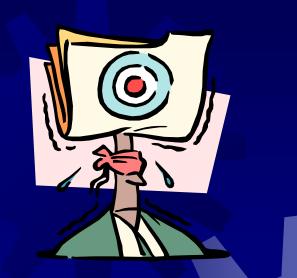

Smoking tobacco Traffic accidents Accidents at work Health-hazard factors at work Suicides

Cost estimates based on US indicators

The Transport Apocalypse

DALYs (disability-adjusted life years)

Projected change in the ranking of the 15 leading causes of death and disease (DALYs) worldwide, 1990-2020 - source WHO "The Global Burden of Disease"



RISK AND RELIABILITY IN AVIATION

Definitions

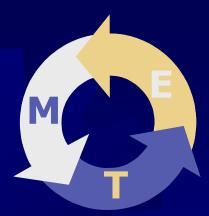
Basic terminology

Human imperfection Limited knowledge

Randomness of incidents and undesirable events Randomness of injuries and losses

> Safety science Concept of risk

Basic terminology



To be conscious of variability (randomness) To take variability into consideration

- in risk analysis
- in accident investigation
- in safety management
- in definition of terms and their interpretation

Undesirable events

 \Rightarrow failures, breakdowns, malfunctions

 \Rightarrow errors

⇒ globally – natural disasters: hurricanes, earthquakes, floods, etc.

climate change (greenhouse effect)

in a workplace: noise, dust, etc.

Undesirable events

(abnormal events)(initiating events)

Undesirable event is an event, which occurrence, in the considered M-T-E system, could result in hazard exposure for humans or property

Zdarzenie niepożądane jest to zdarzenie, którego zajście w rozpatrywanym systemie C-T-O wywołuje w efekcie zagrożenie dla chronionych dóbr

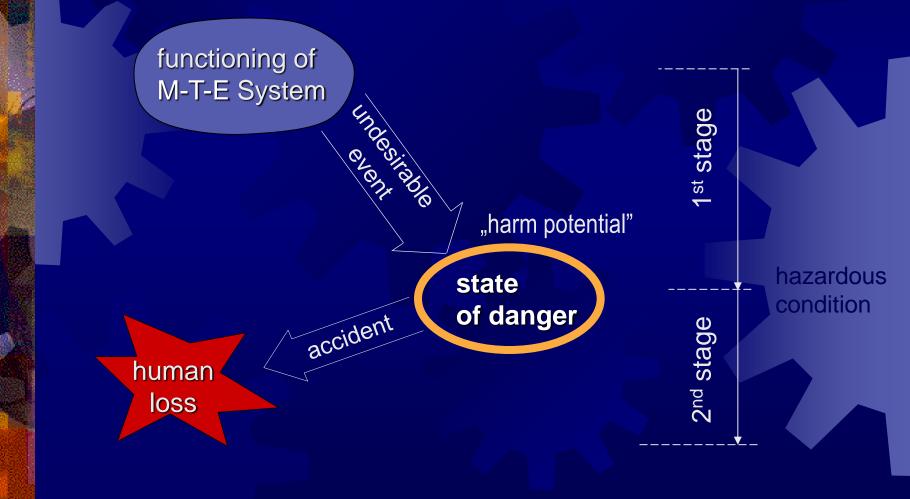
Occurrence of an **undesirable event**, if not correctly responded to, may lead to loss or injury

Harmful consequences

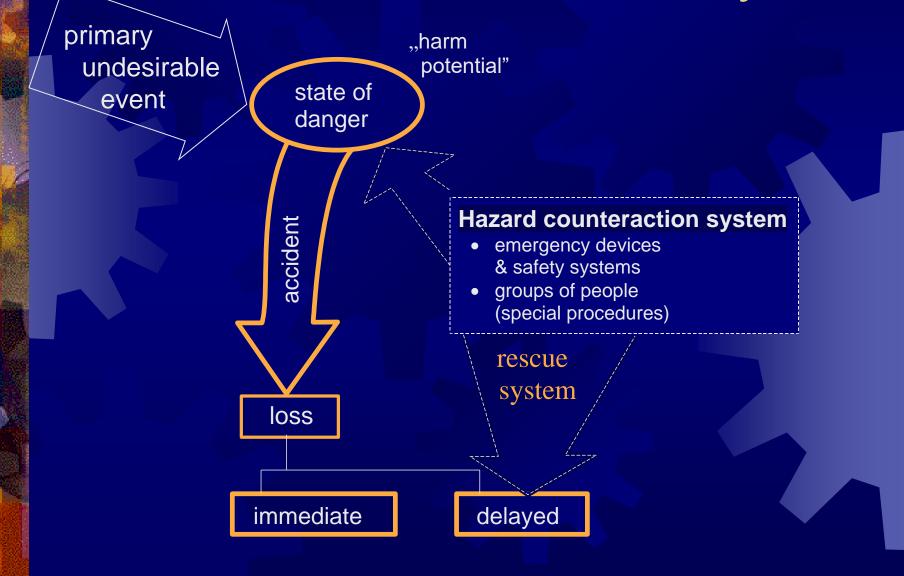
Main areas of loss and damage:

- human health and life,
- natural environment,
- public or private property.

Main categories of loss:


- human loss, i.e. death or injury,
- financial loss, costs, loss of, or damage to property.

immediate loss – delayed loss


individual loss - collective loss

Stages in development of the loss process

Hazard counteraction system

Hazard counteraction devices

(emergency devices)

Personal fall-arrest system

Automatic Fire Extinction devices

Definition of risk

Risk is a possibility of incurring specified loss (damage)
in a definite period of life or
during a particular activity
due to various kinds of incidents or undesirable events, that may occure in the man-technology-environment system

Ryzyko jest to możliwość doznania przez człowieka określonych strat (szkód)

• podczas określonego czasu jego życia lub

 podczas podjętego przez niego określonego działania wskutek różnego rodzaju zjawisk i zdarzeń niepożądanych, które mogą wystąpić w rozpatrywanym systemie człowiek-technika-otoczenie

Other Risk descriptions

"the probability of a future loss"

Risk is the likelihood that a harmful consequence (death, injury or illness) might result when exposed to the hazard

Risk

Risk of human loss Risk of financial loss

Individual risk, collective risk

Risk measures

Total risk, partial risk


Concept of hazard

Risk (conditional), specified for a state of the system caused by an undesirable event

hazard

Hazard is the potential to cause harm

Hazard: a condition, associated with design, operation or environment of a system that has the potential for harmful consequences

Hazards grouped by type

- Slipping/tripping hazards
- Fire
- Chemicals
- Moving parts of machinery
- Work at height
- Ejection of material
- Pressure systems
- Vehicles
- Biological hazards

- Electricity
- Repetitive work
- Dust
- Fumes
- Manual handling
- Noise
- Poor lighting
- Extreme temperatures

Definition of hazard

Hazard is a possibility of making specified loss, assigned to a situation developed after occurrence of an undesirable event in the man-technologyenvironment system

zagrożenie jest to możliwość powstania określonych strat, ustalana dla sytuacji powstałej po zajściu pojedynczego zdarzenia niepożądanego w rozpatrywanym systemie człowiek-technika-środowisko

Hazard

(danger)

Safety ???

Safety is a contrary notion (an opposite concept) to the notion of **human loss risk**

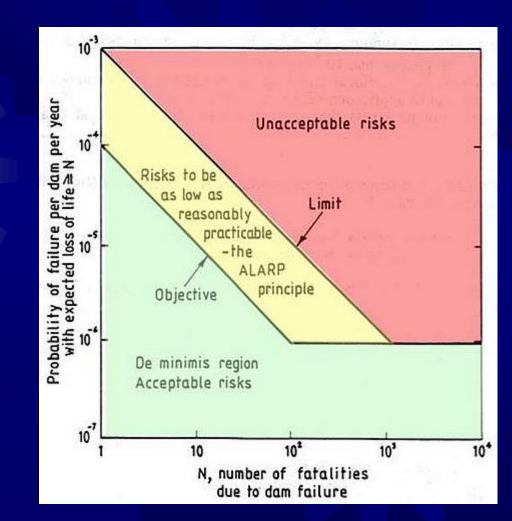
Occupational safety

protection of human health and life in the workplace

90

Safety management

Risk analysis


Cost-benefit analysis

decisions

Risk analysis – a basis for rational activities in safety domain

Safety management

RELIABILITY and SAFETY

Measures

Choice of risk measure

- Risk level

Safety level

$$\Lambda_{c}(t) = P\{\boldsymbol{C}(t) \geq c\}$$

C(t) – symbol of loss, that may occur over a period t of considered system functioning c – value of C(t)

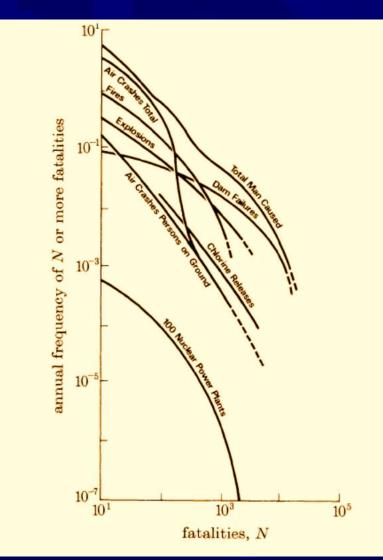
in **boldface** a random variable

$$\Lambda_{c}(t) = P\{\boldsymbol{C}(t) \geq c\}$$

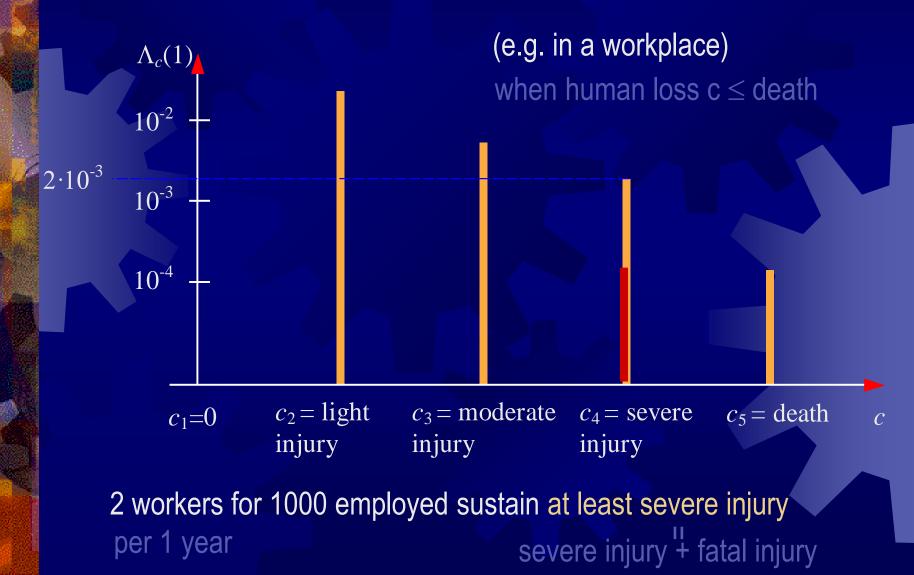
Risk measure is a probability $\Lambda_c(t)$ of loss *C* not less then *c* in a period *t* of functioning of considered system M-T-E

Usually t = 1 (1 year, 1 day, 1 hour, 1 task etc.)

$$\Lambda_{c}(1) = P\{\boldsymbol{C}(1) \geq c\}$$

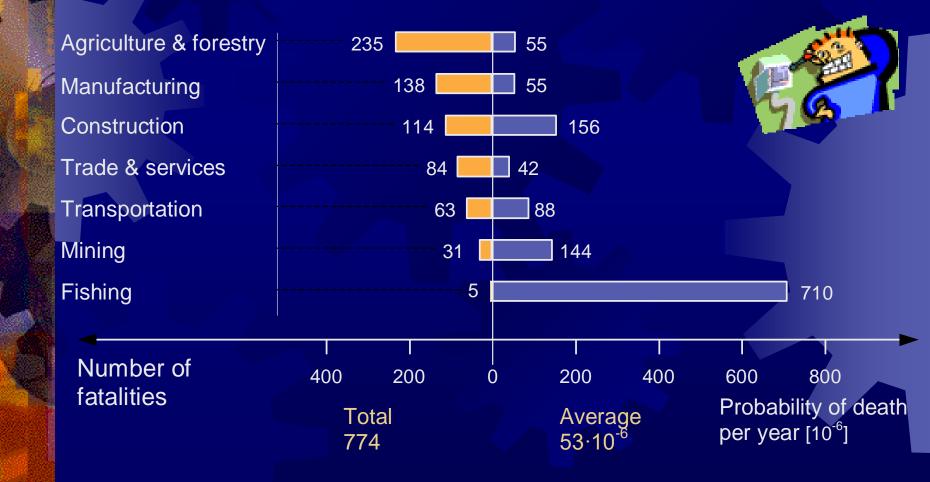


Risk estimator


$$\hat{\Lambda}_{c}(1) = \frac{N_{C_{1} \ge c}(1)}{N}$$

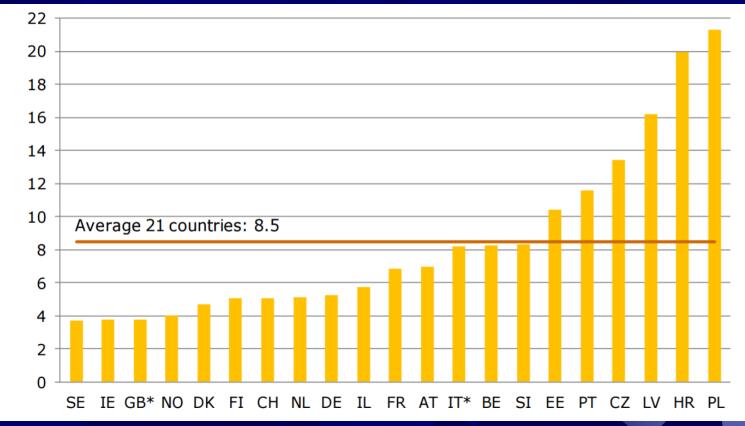
 $N_{C_1 \ge c}(1)$ – number of undesirable events, that occurred in time t = 1 in the population of N considered M-T-E systems and caused (each) a loss $C_1 \ge c$

Example of risk measure



Measure of individual risk

Human loss in Poland (2001)


number of fatal occupational injuries by industry sector

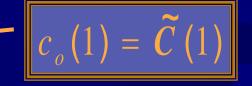
Road fatalities refered to driven distace

Fig. 6: Road deaths per billion vehicle-kilometres. Average for the latest three years for which both the road deaths and the estimated number of vehicle-kilometres are available.

2011-2013 (SE, IE, GB, CH, IL, IT, PT, LV), 2010-2012 (NO, DK, FI, NL, DE, FR, AT, BE, EE, CZ, HR), 2009-2011 (SI, PL). *Provisional figures for road deaths in 2013. Vehicle-km travelled are not available or available on part of the network only in Bulgaria, Greece, Spain, Cyprus, Lithuania, Luxembourg, Hungary, Malta, Romania, Slovakia and Serbia.

Another measure of Risk beside $\Lambda_c(1)$

Expected (predicted) value of loss in time t = 1

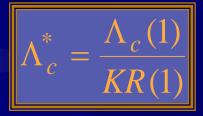

$$c_{o}(1) = E[C(1)] = \overline{C}(1)$$

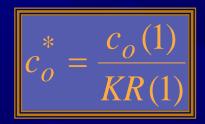
the most likely loss in time t = 1the most probable category of loss in time t = 1

$$c_{o}(1) = \widetilde{C}(1)$$

Most likely loss in time

the most probable category of loss in time t = 1




For a preliminary or crude risk analysis (including qualitative risk analysis)

e.g. in the Risk Score method

Risk measure related to benefit

for comparison of similar systems

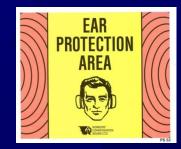
KR(1) – benefit, profit from the system functioning

utility

Number of fatalities per billion \$

Number of fatal occupational injuries per 1 billion dollars GNP

Country	Value of risk measure \hat{c}_{o}^{*}				
	1993	1996	1998	2000	
Russia	-	15,20	11,33	16,95	
Poland	11,00	6,67	5,98	4,72	
Czech Rep.	8,07	5,46	4,46	4,49	
Spain	2,33	1,70	1,93	1,82	
Germany	1,36	-	0,69	0,62	
France	0,84	0,77	0,55	0,55	
Sweden	0,43	0,35	0,30	0,25	
G. Britain	0,27	0,20	0,14	0,15	


Risk Based on Exposure

	5 Yr. Average	General Population	Risk Based on Exposure	
Туре		Risk Per Year	deaths per 100 million vehicle miles	
Motor Vehicle	36,676	1 out of 7,700	1.3	
Large Trucks	5,15	1 out of 55,000	2.5	
Motorcycles	3,112	1 out of 91,500	31.3	
Railroads	931	1 out of 306,000	1.3	
Air Carriers	138	1 out of 2,067,000	1.9 aircraft miles	
HAZMAT	10	1 out of	4.2 100 million	
Transportation	12	23,350,000	shipments	

Health-hazard factors

Measure of (individual) risk in case of loss due to long time exposure to health-hazard factors leading to occupational disease

Insidious hazards: noise, vibration, toxic substances (e.g. tobacco) Noxious agents

Industrial hygiene

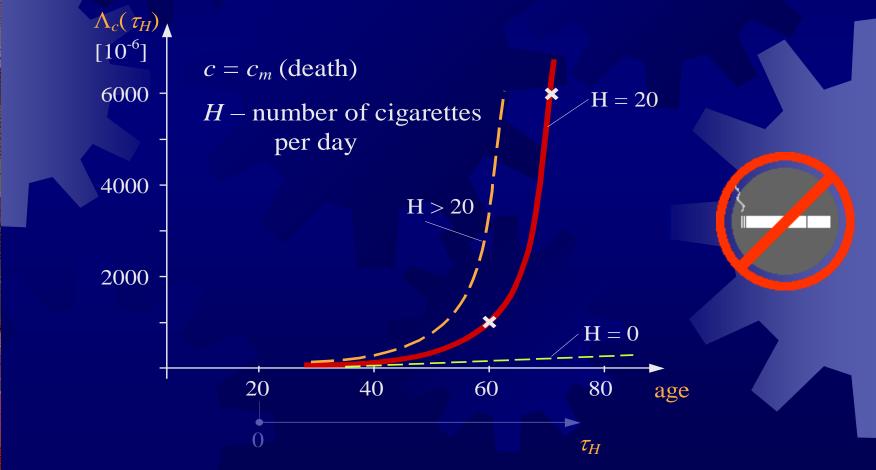
The level of health loss increases with the exposure time τ (and is not identical in each unit of time)

Other risk measures

Risk measure for an occupational disease

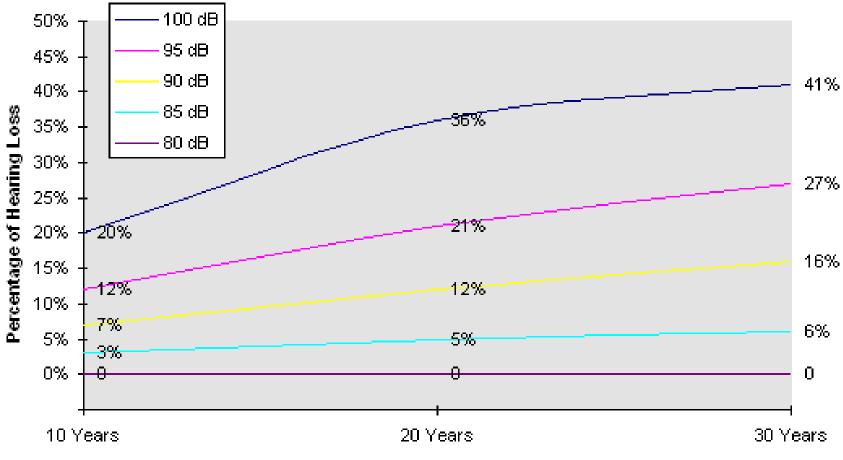
$$\Lambda_{c}(\tau_{H}) = P\{C(\tau_{H}) \geq c\}$$

probability of health loss in the degree higher or equal c


 τ_H – exposure time

H – intensity of the noxious agent (hazard)

e.g. C(t) – percentage of hearing loss

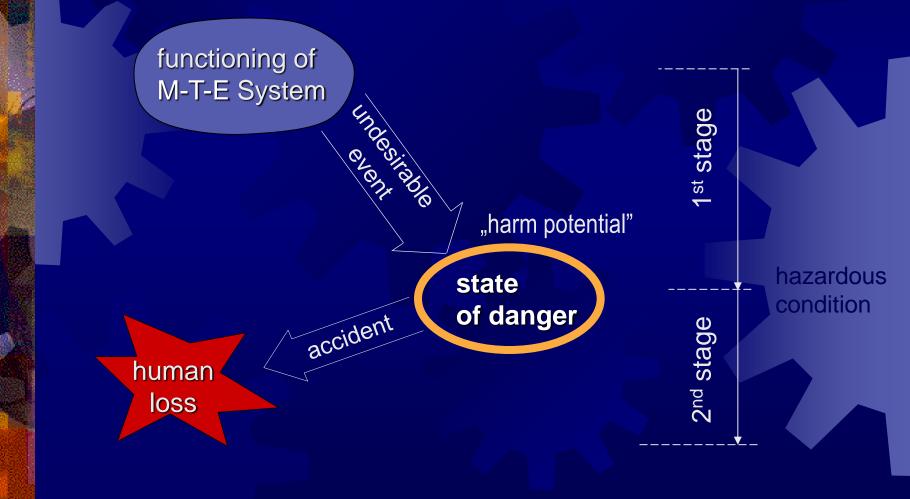

Loss of life probability $\Lambda_c(\tau_H)$

caused by the lung cancer, as an effect of smoking

Hearing loss

Source: Glorig & Baughn, "Basics for Percent Risk Table", U.S. EPA Report 550/9-73-008

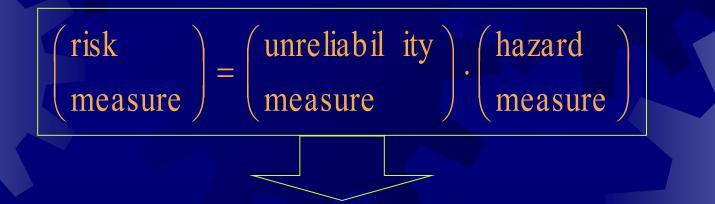
Length of Continued Exposure


The concept of risk

three elements:

The perception that something could happen
The likelihood of something happening
The consequences if it does happen

Stages in development of the loss process


Correlation of Risk Measure with Measures of Reliability and Hazard

 $\begin{pmatrix} risk \\ measure \end{pmatrix} = \begin{pmatrix} unreliability \\ measure \end{pmatrix} \cdot \begin{pmatrix} hazard \\ measure \end{pmatrix}$

risk level likelihood of UE probability of loss CONSEQUENCE

 $\begin{pmatrix} miara \\ ryzyka \end{pmatrix} = \begin{pmatrix} miara \\ zawodności \end{pmatrix} \cdot \begin{pmatrix} miara \\ zagrożenia \end{pmatrix}$

Correlation of Risk Measure with Measures of Reliability and Hazard

the fundamental formula for risk analysis and safety improvement

Measure of Reliability $\Lambda_{c}(1) = Q(1) \cdot Z(c)$

Q(1) – the probability of un undesirable event occurrence in period t = 1 (for systems M-T \Rightarrow unreliability measure (failure function)

Reliability function

R(1) = 1 - Q(1)

Measure of Hazard $\Lambda_{c}(1) = Q(1) \cdot Z(c)$ $Z(c) = P\{C_{1} \ge c \mid A\}$

A - a symbol of an undesirable event C_1 - the loss caused by occurrence of the event A

Hazard in traffic accidents

Values of life hazard in traffic accidents

Country	Value of hazard measure $Z(c_m)$					
Country	1993	1995	1997	1998	2000	
Russia	0,200	0,196	0,137	0,138	0,148	
Poland	0,140	0,122	0,104	0,105	0,110	
Hungary	0,086	0,080	0,070	0,066	0,075	
Spain	0,078	0,068	0,061	0,056	0,049	
France	0,064	0,075	0,066	0,067	0,060	
Czech Rep.	0,063	0,057	0,050	0,045	0,056	
Austria	0,031	0,031	0,027	0,024	0,024	
Germany	0,026	0,024	0,021	0,020	0,018	
G. Britain	0,017	0,015	0,014	0,014	0,014	
USA	0,0006	0,019	0,017	0,019	0,019	

killed injured

6000

4000

2000

0

0-6

7-14

15-17

18-24

wiek

25-39

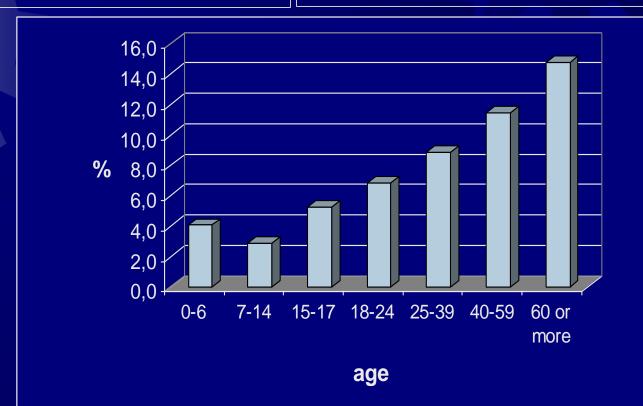
40-59

60 i więcej

800

600

400


200

0-6

7-14 15-17 18-24 25-39 40-59

wiek

60 i więcej

Hazard at work

Values of life hazard in occupational accidents in Poland

Industry sector	Value of hazard measure $Z(c_m)$				
multity sector	1995	1997	1999	2002	
Total	0,0062	0,0064	0,0060	0,0065	
Industry	0,0039	0,0038	0,0037	0,0047	
including:					
Mining	0,0047	0,0038	0,0061	0,0135	
Energy and utilities	0,0122	0,0062	0,0109	0,0065	
Manufacturing	0,0032	0,0037	0,0029	0,0037	
Construction	0,0089	0,0132	0,0102	0,0122	
Agriculture & forestry	0,0080	0,0080	0,0080	0,0071	
Transport, storage	0,0104	0,0103	0,0081	0,0112	
Fishing	0,0080	0,0571	0,0230	0,0102	

Another hazard measure

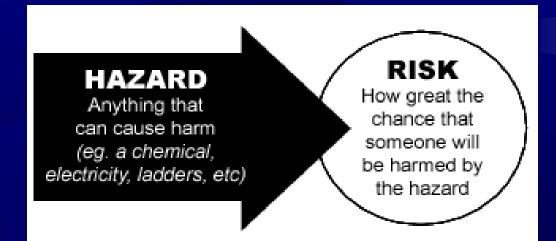
 $\overline{c}_{o}(1) = Q(1) \cdot \overline{Z}_{o}$

Z_o – the expected (predicted) value or the most likely loss caused by occurrence of the event A

Problem 1

In a company there have been 6 accidental deaths in the last 10 years. In this period of time altogether 10000 man-years (1 man-year = 1600 hours) have been registered. Calculate observed FAR value for this period of time.

Fatal Accident Rate is statistically expected number of accidental deaths per 100 million (**10**⁸) exposed hours


$$P = \frac{6}{10^4 \cdot 1.6 \cdot 10^3} = \frac{6}{1.6} \cdot 10^{-7} = 37.5 \cdot 10^{-8}$$

 $FAR \approx 38$

WHAT IS THE DIFFERENCE BETWEEN A 'HAZARD' AND A 'RISK'?

A **hazard** is something that can cause harm, e.g. electricity, chemicals, working up a ladder, noise, a keyboard, a bully at work, stress, etc.

A **risk** is the chance, high or low, that any hazard will actually cause somebody harm.

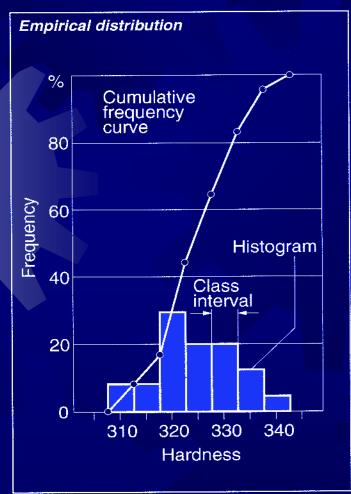
RELIABILITY and SAFETY

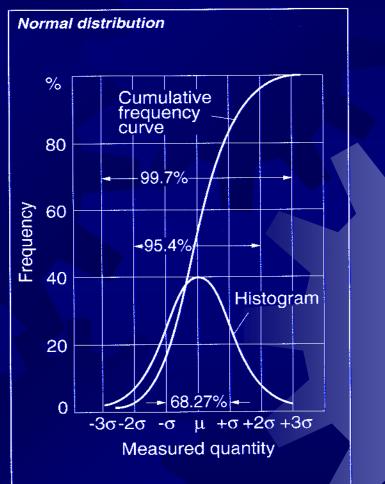
Technical statistics

Probability

 $P(A) = \lim_{n \to \infty} \frac{1}{n}$

An experiment is performed n times the event A occurs n_A times


Probabilities by argument outcomes equally likely to appear


Probability – a measure of belief

The probability that Poland will qualify for the next Europe championship in football is 40%

Histogram and cumulative frequency

frequency-density function,

distribution function

Random variables (stochastic variables)

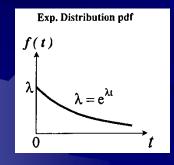
X – random variable

x – one of the values X can take (individual measured value)

F(x) – distribution function, probability for values $\leq x$

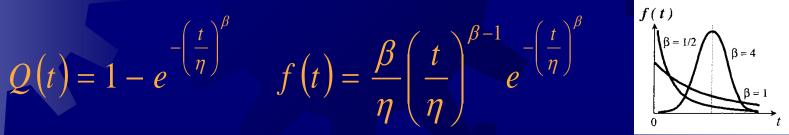
 $F(x) = P(X \le x)$

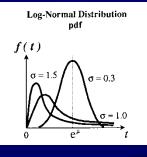
f(x) – probability density $f(x) = \frac{\mathsf{d} F(x)}{\mathsf{d} x}$ function


T – unit lifetime (from installation to failure)

 $t - \text{time} \quad (t \ge 0)$

Q(t) – probability of failure up to time t (service life distribution)


 $Q(t) = P(T \leq t)$ $Q(t) = \int_0^t f(\tau) d\tau$ probability density of T


Common lifetime distributions

 $Q(t) = 1 - e^{-\lambda t}$ $f(t) = \lambda e^{-\lambda t}$

Weibull Distribution pdf

Log-normal distribution

ln(t) follows normal distribution