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Prologue – the Crocco equation 
 

The Euler Equation in Lamb-Gromeko form 

 

 21 1
2 fp       ω υ  

 

First Principle of Thermodynamics 
 

   1 1 1pTds de pd d e dp di dp                       1T s i p      

 

After insertion to EE we obtain Crocco Equation 
 

 21
2 fi T s       ω υ  

Assume: 

 
21

2
i const     - homoenergetic flow  

 s const  - homoentropic flow 
 

Hence  ω υ 0!   In the 2D case, it implies that ω 0 , i.e., the velocity is a potential vector 

field. There exists the velocity potential function   such that 
 

υ  



Stationary incompressible potential flows 
 

Assume flow incompressibility. The velocity field satisfies simultaneously the following 

conditions 
 

0 υ     ,     0 υ  
 

One has    
20 0      υ , i.e., the velocity potential   is the harmonic 

function. 
 

On the other hand, the divergence-free velocity field can be expressed as 
 

υ ψ  
 

where ψ   is the vector streamfunction. One can assume that 0 ψ .  For the potential flow 

we have 

 

0

( ) ( )       0 υ ψ ψ Δψ Δψ  

 

Hence,  Δψ 0 , i.e., the vector streamfunction is a harmonic vector field. 
 

 



In the 2D case                                       x yu  υ e e  

 

The vorticity field is 

 

( ) z zx y
u
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In the 2D case, the vector streamfunction can be expressed as zψ e  , where the scalar field 

  is called (just) a streamfunction. One can write 
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For the potential velocity field we obtain 
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Izolines of    - equipotential lines 

Izolines of    - streamlines  (for a stationary flows they are identical to fluid element 

trajectories) 

 

Note: the equipotential lines and streamlines are mutually orthogonal.  

 

It is sufficient to show that the vectors   and   are perpendicular at each point of the 

flow domain. One can write 

 

0x x y y u u          
            

 

The equipotential lines and the streamlines form an orthogonal grid covering the flow 

domain. 

 

 

 

 

 

 

 

 



 

Complex potential function and velocity 
 

The functions   and   form the Riemann pair, meaning that 
 

,x y y xu             

 

Thus, the complex-valued function of the complex variable z x iy   can be defined 
 

( ) ( , ) ( , )z x y i x y     
 

The function   is called the complex velocity potential. Its derivative exists and can be 

computed as follows 
 

( ) x x y yz i i u i                 

 

One can define the complex velocity ( ) ( )V z z . It is the complex-valued function such 

that 

( , ) ( )} , ( , ) ( )}u x y V x iy x y V x iy    Re{ Im{  
 

 

 

 



Potential flows in polar coordinates 
 

Polar coordinates in the plane             cos , sinx r y r    

                    
2 2 , atan( )r x y y x    

 

Transformation of the velocity field components 
 

cos sin , sin cosr u u             

cos sin , sin cosr ru               
 

Gradient in polar coordinates            1( , ) rr r
r     
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Hence                1,r r r     
 

    
 

Polar components of the velocity field from the streamfunction 
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Scalar Laplace operator in polar coordinates 
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Elementary potential flows in 2D 
 

1. Uniform stream 
 

( , ) , ( , )x y U x V y x y V x U y          

( , ) cos sin , ( , ) cos sinr U r V r r V r U r                
 

2. Source/sink 
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 0Q    - source, 0Q   - sink.  
 

( , ) ln , ( , )
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Q  - source/sink efficiency (flow rate). 
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3. Potential vortex 
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  measure of the vortex intensity (actual sense – later) 

 

( , ) , ( , ) ln
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Circulation along the circular contour  aK  (the center at the 

origin, radius a ) 
 

 
aa a

KK K
d ds      υ s τ  

 

Note: the potential   is the multivalued! In the above formula, the symbol [ ]f  denotes the 

increment of the function f  during a single passage (in the anticlockwise direction) along the 

integration path aK . 

 



 

 

For the potential function, this increment is equal to the vortex “charge” of circulation 

 

    2
2 2a aK K

 
   

 
    

 

Note that the flow induced by the vortex is potential on the whole plane except the vortex 

center (here – the origin).  

 

The curvilinear integral of the induced velocity field along the path which does not circumvent 

the vortex center is zero. More generally, the circulation of the velocity field along arbitrarily 

chosen path is equal to 1 2( )n n  , where 1n  ( 2n ) is a number of anticlockwise (clockwise) 

turns around  the vortex center. 

 

 

 

 

 

 

 



 

 

4. Doublet   (with the axis parallel to 0x) 

 

The flow obtained by shifting sink and source with opposite flow rates to the same point (the 

origin). The flow rate rises without bounds in the process … 
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Passage to the limit 0   (D  - moment of the doublet) 
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Streamlines of the doublet flow 

 

Exercise: 

 Show that 
2 2

( , )
Dy

x y
x y

  


   

 Derive formulae for the Cartesian and polar components of the velocity field 



 

Construction of more complex flows by superposition principle 

 

Since the problem at hand is linear, more complex potential flows can be obtained by 

superposition of the elementary flows.  

 

Example 1: uniform stream plus a source/sink 

 

2
( , ) ( , ) ( , ) cos lnQ

src

x

r r r V r r            

 

2
( , ) ( , ) ( , ) sin Q

src

y
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Exercise: 

 Find polar components of the velocity field 

 Find  a  such that ( ,0) 0u a   (stagnation point) 

 Show that 1
2

( ,0)a Q      

 Find the shape of the line 1
2

( , )r Q     

 

 

 



Example 2: uniform stream plus sink plus source (flow past the Rankin oval) 
 

                            2 12 2
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Exercise: 

1) show that  2 2 2 22 ( ) ( )
( , ) Q x a x a

x a y x a y
u x y V 

 
    

   
 

  

 

2) show that the stagnation points are  ( , ) ( ,0)x y b  , 

where   
2 2 aQ

b a
V 

    

3) show that the line 0   is described as 
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( )

tan[2 ( ) / ]

aY x
x a Y x

V Y x Q 

    

 



Example 3: Symmetric flow past a circular contour (a cylinder) 

 

Consider the superposition of the uniform stream and the doublet 
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In polar coordinates … 
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Velocity field in polar coordinates … 
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For  r a  we obtain                      
( , ) 0

( , ) 2 sin

r a

a U

 

  




 
 

 

Thus, the contour r a  is one of the streamlines – we have obtained the flow past a circular 

contour with the center at the origin and the radius a . 

 

Pressure at the contour can be computed from the 

Bernoulli Equation 
 

2 21 1
2 2

( , ) ( , )p U p a V a        

 

Since 
2 2 2( , ) 4 sinV a U   , we get 
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2
( ) (1 4sin )p p U       

 

In Aerodynamics, we often use the pressure 

coefficient 
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Note that: 

 
21

max 2
( ,0) ( , )p p a p a p U p q           -  stagnation pressure ( 1pc  )  

23 31
min 2 2 2

( , ) ( , ) 3p p a p a p U p q           - minimal pressure ( 3pc   ) 
 

 

Note also that the pressure distribution is symmetric with respect to both 0x and 0y  axis. 

Hence, total aerodynamic force is equal zero! In particular, there is no aerodynamic drag. This 

results is in clear contradiction to the properties of real fluid flows. 

 
 

However, it is possible to modify the flow in order to obtain the lift force. To this aim, an 

additional component must be included – the potential vortex located at the circle center. 
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Note that the presence of the vortex does not spoil the circular streamline! 

 

 

 



Upon this modification, the velocity field reads 
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The velocity distribution at the circular contour is 
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The stagnation points can be determined (if they exist) … 
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The solutions 
 

,1 ,1asin , asin
4 4U a U a

 
  

 
 

 

       

 

Exist as long as 4 U a   .  If 4 U a    then only one stagnation point appears on 

the contour (dependently on the sign of the circulation   the angular location of this point is 
1
2

   or 3
2

  ). If 4 U a    then the stagnation point appears inside the flow, not 

on the contour.  

 

Again, the pressure distribution follows from the BE … 
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This time 
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Hence 
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Note that this distribution is still symmetric with respect to the axis 0y  - the drag force is again 

equal zero! However, the presence of the vortex breaks the symmetry with respect to the axis 

0x. The lift force can be computed from the formula 
 

2

0
( , )sin ya p a d
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as follows … 
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We have arrived to a very simple result – known as the Kutta-Joukovski formula.  

 

yU L e  

 

We will show later that this formula is valid also for contours of general shape. 

 

Again, due to symmetry the drag force defines as  

 
 

2

0
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  D e 0  

 

vanishes identically. This (nonphysical) effect is known as the d’Alembert Paradox.  

. 

 

 

 

 

 

 

 



Milne-Thomson Theorem 
 

Let the potential flow is given with  ˆ( , )x y   and ˆ ( , )x y . Milne-Thomson Theorem explains 

how to modify this flow in order to achieve two goals: 

 The circular contour 
2 2 2x y a    is one of the streamlines of the modified flow  

 Total charge of the circulation remains unchanged. 

 

The appropriate formulae for the modified streamfunction and the velocity potential are 

following 
22

2 2 2 2
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Proof – exercise. 

 

Analogical formulae in the polar coordinate are even simpler 
 

2

ˆ ˆ( , ) ( , ) ( , )a
r

r r           ,     
2

ˆ ˆ( , ) ( , ) ( , )a
r

r r        

 

 

 



 

Indeed, the radial component of the velocity can be computed as follows 
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At the circular contour one gets    
2 2

2
ˆ ˆ( , ) ( , ) ( , ) 0a a

r r r aa
a a        . 

 

Let us check what happens to the tangent component. To this aim, we calculate azimuthal 

component  

 
2 2
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The, on the contour  r a  we obtain 
 

2

ˆ ˆ ˆ( , ) ( , ) ( , ) 2 ( , )a
a
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We conclude that the flow modification proposed by Milne-Thomson cancels the normal 

velocity component and doubles the tangent component. 

 

 

 



 

 

Examples: 

 

1. Cylinder immersed in the uniform flow 

 

We have  ˆ( , )x y U x  .  Accordingly to MT Theorem we have 
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which is exactly the right formula. Starting from the polar form, we obtain  
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which is also correct. 

 

 

 

 

 



 

2. Cylinder immersed in the flow induced by a point vortex 

 

Assume that the original flow is induced by the potential vortex located at the point (c,0). The 

streamfunction is 

 

2 2

2
ˆ ( , ) ln ( )x y x c y

      

 

Then, the modified flow is 
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In explicit form 
 

 
2 4 2

2 4 2

2 2 2 2 2
2 2 2 2 2

2 2 2 2

22
( )( )

( ) ( )
( , ) ln ln

2 4 ( )( )
a x a xa x a x

x y x yx y x y

x c y x c y
x y

cc

 


 
  

   
   

  
  

 

We will show that the modified flow is actually induced by three potential vortices. 

 

 



To see this, we transform the expression under the logarithm as follows 
 
 

4 22 4 2 4 2

2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

( )

2 2 2 2 2 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2 2

( ) [( ) ]( )

( ) ( )[ 2 ( ) ]

[( ) ]( ) [( ) ]( ) [( ) ]( )

2 ( ) [( ) 2 ] [(

a ya x a x a x
x y x y x y x y

a a
c c

x c y x c y x y

c x y a xc c x y

x c y x y x c y x y x c y x y

a a xc c x y c x x y c

   

    
 

      

        
  

     
2 2 2) ]a

cx y 

 

 

Thus, the streamfunction can be written as follows 
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The corresponding pattern of streamlines …. 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can also put the cylinder into the flow induced by a 

source/sink. The resulting flow is shown in the right … 

 

 

 

 



Even more complex flow is presented below … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


