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AIM AND SCOPE: 
 

 Presentation of the concept of potential flow modelling using singular spatially 

distributed vorticity carriers 

 Application of this approach to the theory of a thin airfoil 

 Derivation of formulae for aerodynamic force and moment generated by a thin 

airfoil 

 Determination of the pressure and aerodynamic centers 

 Application of the thin airfoil theory to the symmetric airfoil with (rear) flap. 
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1. Velocity induced by a vortex line 
 

 

 

We have already introduced the (potential) point vortex. Let’s 

remind its law of induction in the complex form (the center of 

the vortex is located at the point 0 0 0z x iy  ) 
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Hence, the Cartesian components of the induced velocity vector are .. 
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Consider the velocity field induced by the 

circulation distributed continuously along the 

vortex line ( ), ( )x X s y Y s  .  

 

The linear density of the circulation along this 

line is  ( )s  .  

 

 

 

 

 

 

The Cartesian components of the velocity field induced by this line are 
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Assume that the velocity induced by the VL at the point P (located on the VL) is finite. Then: 

 Velocity normal to the line computed along any line crossing the VL at this point changes 

continuously. 

 Velocity tangent to the VL computed along any line crossing the VL at the point P 

experiences a jump (meaning – it is discontinuous) equal to the value of the function   at 

the point 

 

The latter statement can be substantiated by means of the 

Stokes Theorem applied to the curvilinear quadrilateral 

ABCD and its contour 
 

2

1

( )

s

sABCD ABCD

d dxdy s ds     υ s  

 

 
 

Exercise: using the ST and continuity of the normal velocity across the VL, show that 
 

 lim lim ( )P P
X P X P

s 
  
  υ υ  
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Vortex model od a thin airfoil 
 

Variant 1 

 

Vocabulary 

 

Polish English 

szkieletowa camber line 

 

 

 

 

 

 

 

Flow past a thin airfoil is due to the superposition of the free-stream and the velocity induced 

by the vortex line shaped identically as the camber line.  The distribution of the circulation is  

such that the camber line is the streamline of this flow. 

 

But, if the vertical deflection of the camber line, i.e., the camber of the airfoil, is small, then … 
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Variant 2 (final) 
 

 

Vocabulary 

 

Polish English 

cięciwa chord 

 

 

 

 

 

 

 The circulation is distributed continuously along the chord line, in the interval [0, ]c . 

 We assume small values of the camber, hence the velocity induced at any point [ , ( )]x Y x  

lying on the camber line  does not significantly differ from the velocity induced at the point   

[ ,0]x .   

 

 



AERODYNAMICS I 
 

 

Consequently, the normal velocity induced along the camber line can be expressed by the 

approximate formula 
 

, [ , ( )] [ ,0] [ , ( )] [ ,0] [ , ( )]n x yw x Y x u x n x Y x x n x Y x     

 

The unary vector normal to the camber line at the point [ , ( )]x Y x  is 
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The condition of airfoil impermeability – a complete normal velocity at the camber line is 

zero 

, , 0n nV w    
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It follows form the figure that 
 

, sin( ) ( ) { [ ( )]} [ ( )]nV V V V arctg Y x V Y x         
          

 

Impermeability condition takes the form (basic equation of the this airfoil theory) 
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We introduce the coordinate transformation …     
 

1 1
02 2

(1 cos ) , (1 cos )c x c       

 

Then  1
2

sind c        and          
0 1 cos 0 0

1 cos 2c
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Consider thin symmetric airfoil (within this theory – equivalent to the flat, infinitely thin 

plate), i.e., assume that ( ) 0Y x  . 
 

The basic equation takes the following form 
 

00

1 ( )sin

2 cos cos

d
V


   


    

  

 

From the properties of the velocity field induced by the vortex, it follows that we must impose 

the additional condition 

( ) 0    
 

Otherwise, the velocity at the trailing edge will be ambiguous – the Kutta-Joukovsky 

condition will be violated! 
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In order to find the solution, the following Glauert integrals are needed 
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In particular …                             
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cos
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d
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
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Consider the function                      1( ) cos / sinK     
 

We have                            1

0 00 0

1 ( )sin cos

2 cos cos 2 cos cos 2

d K d K
 
     

     
 

    

 

If the constant  K  is such that  1
2

2K V K V          then the function 
 

1( ) 2 cos / sin 2 cotV V          
 

fulfils the basic equation!  Unfortunately, 1( )    does not satisfy the K-J condition! 
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Due to linearity, we can modify our solution by adding any component 
2( )   such that  

 

2
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First type of the Glauert integral for 0n   yields 
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Hence, we can adopt  2 ( )
sin

K
 


 .   

 

Full distribution of the circulation of the vortex line is 
 

cos
( ) 2

sin sin

K
V


  

 
    

 

Note that (exercise!) the Kutta-Joukovsky condition is satisfied  iff  2K V   .  
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Finally 
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Note that the density of circulation at the leading edge ( 0  ) is infinite!!! 

 

Let us calculate the total charge of circulation of the vortex line. In spite of the leading-edge 

singularity, this charge is finite.  

 

Indeed, we have 
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Aerodynamic force and moment 
 

From the Kutta-Joukovsky formula one obtains the aerodynamic force vector (only lift 

component exist!) 

 

( sin cos )x y

L

V     L e e  

 

The value of the lift force is    

 

2 21
2L L

q

L V c C V c C q c 



      

 

Lift force coefficient                                      2LC   

 

The slope of the lift force characteristics ( )L LC C    is    equal     2LdC

d



  
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Let us calculate the aerodynamic moment with respect to the leading edge  
 

For small angles of attack, this moment can be calculated as follows 
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  

   

   

 

We conclude that – for small angles of attack – the point where the aerodynamic (lift) force is 

applied – called the center of pressure - is located at the distance ¼ c (a quarter of the 

chord length)  from the leading edge. 

 

Remark: It is common convention in aircraft aerodynamics that the positive aerodynamic 

moment works towards increment of the airfoil angle of attack (hence, it makes the airfoil to 

turn clockwise). Thus, the moment acting on the symmetric airfoil at a positive angle of attack 

is negative.  
 

 



AERODYNAMICS I 

 

We will adjust the sign of the moment to this convention 
 

1
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The moment coefficient is defined as 
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Note that the moment with respect to an arbitrary point P such that Px x  is equal 
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In terms of the aerodynamic coefficients … 
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If in particular 1
4Px   , then we have  , /4 0m cC  . 

 

One can see that the coefficient of the aerodynamic moment with respect to the center of 

pressure 1
4Px   is identically zero and hence it does not depend on the angle of attack (at least 

for sufficiently small angles), i.e., 

 

, /4
0

m cdC

d
  

 

According to the definition, such point is called the aerodynamic center. Thus, for thin 

symmetric airfoils the aerodynamic center coincides with the center of pressure. 
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We will now extend our consideration to non-symmetric thin airfoils. 

 

Let us remind the basic equation of the thin airfoil theory … 

 

0
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V Y x
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which – after the coordinate transformation assumes the following form  

 

0
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2 cos cos

d
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Solution of this equation in the non-symmetric case is more complex. We seek the distribution 

of the circulation along the chord line in the form of the Fourier series 

 

0
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After insertion to the equation, one obtains  
 

0
0

10 00 0

cos 1 1 sin sin
[ ( )]

cos cos cos cos
n

n

A n
d A d Y x

 
  
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     


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
  

 
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Using again the Glauert integrals 
 

0
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0 0 00 0 0

1
1
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st Glauert integral
for n
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  
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      

the above equation is transformed to the form 

 

0 0 0
1

cos [ ( )]n
n

A A n Y x  




     
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Equivalently                 

0 0 0
1

[ ( )] ( ) cosn
n

Y x A A n  




     

 

In order to find the Fourier coefficients , 0,1,2,...jA j    one has to:  

 express the function ( )Y Y x    by the transformed coordinate [0, ]   , 

 calculate Fourier coefficients of the obtained function. 

 

Let us denote 0 0( ) [ ( )]P Y x  . We expand the function 0( )P   in a trigonometric series 

 

0 0 0

1

( ) cosn

n

P B B n 




   

 

In follows from the analysis that 

 

0

0 0

1 2( ) , ( )cosnB P d B P n d

 

         
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Hence, we obtain the following relations 
 

0 0 0

0 0

1 1( ) ( )A B P d A P d

 

              

0

2 ( )cosn nA B P n d



       

 

The corresponding distribution of the circulation is expressed by the formula  
 

0
1

cos 1
( ) 2 sin

sin n
n

V A A n


  







 
 
 


    

 

Note that the Kutta-Joukovsky condition is automatically fulfilled as ( ) 0   . 
 

Total circulation connected to the thin airfoil is equal 

 

0
10 0 0 0

2
( ) ( )sin (1 cos ) sin sin

c

n
n

cd d cV A d A n d
  

            





 
 
  

          
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Since 

0

(1 cos )d



           ,        

0

2 1
sin sin

0 1

for n
n d

for n

 
  


 


  

then 

1
0 12

( )cV A A     

 

Lift force L  and lift coefficient 
LC  are 

 

21 1 1
0 1 0 12 2 2

2 ( ) 2 ( )L V A A V c A A q c            

 

1
0 12

2 ( )LC A A   

Explicitly … 
 

1

0

2 ( )(cos 1)LC P d


    
 
 
  

    

 

We see that the slope  2LdC

d



 , i.e., it does not depend on the airfoil camber. 
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Comment:  
In the Lecture 2, we have asked the Reader to demonstrate that the slope of the lift force 

characteristics for the Joukovsky’s non-symmetric airfoil with zero thickness is expressed by 

the approximate formula  
22 (1 2 )LdC

f
d




  . The small correction – proportional to the 

square of the camber – appears. However, the theory of a thin airfoil does not see this 

correction – this theory is sensitive to only “1st-order” effects. Can you explain why? 

 

The formula for the lift force coefficient can be written as follows 
 

0
)2 (

L
C      

 

where                                     1
0

0

( )(cos 1)P d


       

 

is the (negative) angle of attack, at which the cambered airfoil is not producing any lift. It 

follows also that 
 

0

( 0) 2 ( )(cos 1)LC P d


       
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Let us again determine the aerodynamic moment with respect to the leading edge 

 

21
0 4

0 0 0

2 21
02
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2 2 21
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10 0

( ) ( ) ( )sin

cos 1
sin sin

sin

(1 cos ) (1 cos )sin sin
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(1 cos )

c c

n
n

n
n

M V x x dx V x x dx V c d

V c A A n d

V c A d A n d





 

        


   



      





  











 
 
 

 
 
  

      


  

   





  



 

 

 

We need to evaluate the following integrals 
 

2 2

0 0

1
2(1 cos ) sind d

 

         

0 0 0

1
2

2 1

(1 cos )sin sin sin sin sin sin 2 4 2

0 {1,2}

for n

n d n d n d for n

for n

  


          




     
 

    



AERODYNAMICS I 

 

Thus, we obtain the formula 
 

2 21 1
0 0 1 24 2

( )M V c A A A     

 

Adjusting sign to the standard aerodynamic convention, one has 
 

2 2 21 1 1 1
0 0 1 2 0 1 24 2 2 2

( ) ( )M V c A A A A A A q c         

 

The moment coefficient is equal 
 

1 1 1
,0 0 1 2 1 22 2 4

( ) [ ( )]LmC A A A C A A        

 

We have shown earlier that 
 

1
,0 1 2 2 1, /4 4 4 4

( ) ( )Lmm c
C C C A A A A        

 

The obtained value of , /4m cC  does not depend of the angle of attack. Hence, the point 1
4

x c  is 

still the aerodynamic center, although it is not the center of pressure (as, in general, 

, /4 0m cC  ) 
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The actual position of the center of pressure 
Px  is 

 
21 1 1 1 1

0 1 2 0 1 1 22 2 2 2 2

1 1
0 1 0 12 2

1 2 1 2

( ) [ ( )]

2 ( ) 2 ( )

( ) 1 ( )
4 4 4

P

L L

LC

q c A A A c A A A A
x

A A q c A A

c c c
A A A A

C C

 

 

 





 
 
 

    
  

 

     
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Thin symmetric airfoil with the flap 
  

We will discussed shortly the model of a thin symmetric airfoil with the (rear) flap 

 

 

 

 

 

 

 

 

 

Camber line and its derivative 
 

0 [0, ]
( )

tan ( ) ( , ]

f

f f

for x x
Y x

x x for x x c


 

  
     ,      (1 )fx f c   

 

0 [0, )
( )

tan [ , ]

f

f

for x x
Y x

for x x c


  

 
 



AERODYNAMICS I 

 

As before, we apply the coordinate transformation  x  .   

 

We have tp determine the angular coordinate corresponding to the flap hinge 

 
1
2(1 ) (1 cos ) (1 )f fx f c c f c       

 

Hence          cos 2 1f f     

 

For instance, if 0.15f   then 
0acos( 0.7) 134.43f    . 

 

The function ( )P   is defined by the formula 

 

1
2

0 [0, )
( ) [ (1 cos )]

tan [ , ]

f

f

for
P Y c

for

 
 

   






  

 
 

 

 

 
 



AERODYNAMICS I 
 

We have to calculate three first Fourier coefficients … 

 

0

1 1( ) ( ) 1

f

fP d tg d tg
 



 


    



 
 
  

       

 

Hence          0 (1 )fA tg       

 

Next … 

 

1

0

2 2 2 2( )cos ( ) cos ( )( sin ) sin

f

f fA P d tg d tg tg
 



                     

 

2

0

2 2 1 1( )cos2 ( ) cos2 ( )( sin2 ) sin2

f

f fA P d tg d tg tg
 



                     
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The lift coefficient of the this symmetric airfoil with the flap is expressed as follows 
 

1 1
0 12

2 ( ) 2 2 (1 sin )

2 2( sin )

L f f

f f

C A A tg      

    

      

   
 

 

We have shown earlier that the moment coefficient is equal 
 

1 1
,0 0 1 22 2

( )mC A A A    

 

Upon insertion, we have the formula 
 

1
,0 22

[ (2 cos )sin ]m f f f
C            

 

Let us take a look at the numbers. Assume again 15% flap (i.e., 0.15f  ). We already know 

that 
0134.4f  .  For this data we obtain 

 

2( sin ) 3.02
f f

      

 

1
2
[ (2 cos )sin ] 1.36

f f f
        
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Thus, we have obtained the following relations 

 

2 3.02LC         ,    
,0 2

1.36
m

C     

 

The moment coefficient , /4m c
C  is equal 

 
1 2

2 1, /4 4 4

1
4

( ) ( sin2 sin )

(sin2 sin )

m c f f

f f

C A A tg tg 
    

  

    

 
 

 

For the 15%  flap                               
, /4

0.395
m c

C   

 

 

Exercise: Perform analogous analysis for the thin symmetric airfoil with the short flap at the 

leading angle (the slot). Assume that the hinge of the slot is located at the distance equal f c  

from the leading edge. Compare the effects of 10% slot and 15% rear flap on the aerodynamic 

coefficients. 


