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TWO AND THREE- DIMENSIONAL LINEAR ELASTOSTATICS 

      The finite elements of trusses and beams are, due to specific assumptions and simplifications,  one –dimensional.   All field problems 

of stress analysis are in fact three-dimensional. In some limited cases the mathematical description of the problem may be formally reduced  to  

two dimensional models (plane stress state, plane strain state, axisymmetry) or ore even one dimensional as discussed bef. 

Consider a linearly elastic body of volume Ω, which is bounded by surface Γ. 
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The body is referred to a three (or two) dimensional, rectangular, right-handed Cartesian coordinate system xi , i=1,3   (or x,y,z). The body is in 
static equilibrium under the action of body forces Xi  in   Ω, prescribed surface tractions pi   and prescribed displacements  ui on   on the 
boundary Γ The three unknown internal fields are displacements ui , strains ijε  and stresses   ijσ .  All of them are defined in Ω.  

(x1) 

(x2) 

z (x3) 

Data: 

Ω  –the analysed  volume (domain), 

Γ  –the boundary, 

ip  –boundary tractions    [N/m2]., 

iX  –body forces [N/m3]. 

prescribed displacements  ui on  on the part 

of the boundary Γ 

 

Unknown internal fields: 

iu  –displacement field, 

ijε  – strain state tensor, 

ijσ  – strss state tensor, 
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Component notation (Einstein  indicial notation)  for Cartesian tensors 
 

The notation is used in rectangular Cartesian coordinates. In this notation, writing ui is equivalent to writing the three components u1, u2, u3 of the 
displacement field u.  

The Einstein summation convention is a tensor notation, which is commonly used to implicitly define a sum. The convention states that when an 
index is repeated in a term that implies a sum over all possible values for that index.  

Three examples:  

1 2 3

1 2 3

i i

ii i

u u u u u

x x x x x

∂ ∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂ ∂∑  

 

1 2 3
1 2 3

i i i i i
j j

jj j

u u u u u
n n n n n

x x x x x

∂ ∂ ∂ ∂ ∂= = + +
∂ ∂ ∂ ∂ ∂∑  

 
aij xj = bi  i,j=1,n   denotes the set of n linear equations 
 
 

The indication of derivatives of tensors is simply illustrated in indicial notation by a comma. 

,i
i

f
f

x

∂=
∂

 

The comma in the above indicial notation indicates to take the derivative of f with respect to the  coordinate xi . 

Examples:  1 2 3
,

1 2 3

i i
i i

ii i

u u u u u
u

x x x x x

∂ ∂ ∂ ∂ ∂= = = + +
∂ ∂ ∂ ∂ ∂∑  

1 2 3,
1 2 3

i i i i i
i j j jj

jj j

u u u u u
u n n n n n n

x x x x x

∂ ∂ ∂ ∂ ∂= = = + +
∂ ∂ ∂ ∂ ∂∑  

The Kronecker delta is a convenient way of expressing the identity in indicial notation:   
1

0ij

if i j

if j
δ  ==  ≠ 

 

The Kronecker delta follows  the rules of index notation:   ik ij jkA Aδ=  
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Strain state: 

 

3 extensional strains  3 shearing strains 
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γxy , γyz,  γzx  - engineering shearing strains     

 

 

The strains may be written in the form of symmetric matrix assuming that 

εxy= γxy/2  ,   εyz= γyz/2  ,   εzx= γxz/2.  In this case the strains components form the symmetrical strain tensor. 

The components of the strain tensor εij are often written in the form of symmetric matrix. 
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( ), ,
1

2ij i j j iu uε = +      ( εij=εji )     - kinematic equations 

Stress state :   stress tensor    ijσ  

Constitutive equations   (  3D  Hook’s  law) 

 

σx    (εx) 

τxz 

τxy 

σz    (εz) 

σy (εy)

 

τzy 

τyx 

τzx 

      

σx= σxx             σy= σyy                  σz= σzz 

E-Young’s modulus,           ( )G
E

2 1
=

+ νννν
 - shear modulus,       ν-  Poisson’s  ratio        

( )2
1 2

ij ij ij kk
v

G
v

σ ε δ ε = + − 
     

1

2 1
ij ij ij kk

v

G v
ε σ δ σ = − + 

    (εkk= ε11  +ε22  +ε33) 
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Strain energy density:  1
'

2 x x y y z z xy xy yz yz zx zxU σ ε σ ε σ ε τ γ τ γ τ γ = + + + + + 

  

U’= ½  εij  σij 

Principle of the total potential energy: 

1

2z ij ij i i i iV U W d X u d p u dσ ε
Ω Ω Γ

= − = Ω − Ω − Γ∫ ∫ ∫ =min , 

Matrix notation 

Matrix notation is a modification of direct tensor notation in which everything is placed in matrix form, with some trickery used if need be. The 

main advantages of  the matrix notation are historical compatibility with finite element formulations, and ready computer implementation in 

symbolic or numeric form. 

The representation of scalars, which may be viewed as 1 × 1 matrices, does not change. Neither does the representation of vectors because 

vectors are column (or row) matrices. Two-dimensional symmetric tensors are converted to one-dimensional arrays that list only the independent 

components (six in three dimensions, three in two dimensions). Component order is a matter of convention, but usually the diagonal components 

are listed first followed by the off-diagonal components.  

For the strain and stress tensors this “vectorization” process produces the vectors  { }, ,

x x

y y

z z

xy xy

yz yz

zx zx

σ ε
σ ε
σ ε

σ ε
τ γ
τ γ
τ γ
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The relation between the strains and the displacement components in matrix notation: 

 

 { } [ ]{ }( , , ) ( , , )x y z R u x y zε = ,     

[ ]R  is called symmetric gradient matrix in the continuum mechanics literature. 

For  3 dimensional case : 

{ } [ ] { }

0 0

0 0

0 0
, , ,

0

0

0

x x

y y
x

z z
y

xy xy
z

yz yz

zx zx

x

y

u u
z

R u u

u w
y x

z y

z x

σ ε
σ ε
σ ε

σ ε υ
τ γ
τ γ
τ γ

∂ 
 ∂
 ∂ 

     ∂
     ∂         
     ∂       = = = = =        ∂ ∂            ∂ ∂     
     ∂ ∂        

∂ ∂ 
 ∂ ∂
 
 ∂ ∂ 

 

In 2D case 

x

y

xy

σ
σ σ

τ

 
 =  
 
 

,         { }
x

y

xy

ε
ε ε

γ

 
 =  
 
 

,          [ ]

0

0

x

R
y

y x

 ∂
 
∂ 
 ∂=  ∂ 
 ∂ ∂
 ∂ ∂  

,          { } u
u

υ
 

=  
 

. 



Finite Element Method 1 – lecture notes                     LINEAR ELASTOSTATICS        Page 7 of 10 
_________________________________________________________________________________________________________________ 

 7 

Hook’s law: 

{ } [ ]{ }εσ D= ,             [ ]

1 0 0 0

1 0 0 0

1 0 0 0

1 2
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 .  

Plane stress state ( )0, 0, 0z yz zxσ τ τ= = =   Plane strain state ( )0, 0, 0z yz zxε γ γ= = =  

[ ] 2
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Strain energy density  

{ }' 1

2
U ε σ=     

Total potential energy :                       { } { } { }1

2zV U W d X u d p u dε σ
Ω Ω Γ

= − = Ω − Ω − Γ          ∫ ∫ ∫  
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Finite element method for 2D and 3D problems of theory of elasticity: 

 The domain   Ω  is divided into the subdomains (finite elements)   Ωi :                   
1

LE

i
i=

Ω = Ω∪           0i jΩ Ω =∩          ji ≠  . 

u

v
elementy dwuwymiarowe

LWE=3 LWE=6 LWE=4 LWE=8

elementy trójwymiarowe

w

u
v

LWE=4 LWE=10 LWE=8 LWE=20

LWE - liczba węzłów elementu  
 

2D and 3D finite elements 
 
Displacement field over the element is interpolated from the nodal displacements:  
 { } [ ] { }( , , )

e
u N x y z q= ,  

where { }eq - nodal displacements vector , [ ]N  - shape functions matrix. 

 

 For example for the simplest trangular element with 3 nodes and 6 DOF  the relation is  

2D elements 

3D elements 

6DOF         12DOF        8DOF      16DOF 

12DOF         24DOF       24DOF      60DOF 
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1
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 where Ni are the linear functions 

Shape functions   Nij   are usually polynomials defined in local (element) coordinate systems. 

Displacements, strains and stresses within each element are defined as the functions of the coordinates of the considered point  and the nodal 

displacements 

 

{ } [ ]{ }
{ } [ ]{ } [ ] [ ]{ } [ ]{ }
{ } [ ]{ } [ ] [ ]{ }

,

,

.

e

e e

e

u N q

R u R N q B q

D D B q

ε

σ ε

=

= = =

= =

   [B] – strain-displacement matrix 

The strain energy of the element Ωe is: 

{ }1

2
e

e eU dε σ
Ω

= Ω  ∫ . 

[ ] [ ] [ ] { }1

2
e

T

e eee
U q B D B q d

Ω

= Ω  ∫ ,      [ ] { }1

2e ee e
U q k q=    . 

Where  

[ ] [ ] [ ] [ ]
e e

T

e ee
k B D B d B d∗

Ω Ω

 = Ω = Ω ∫ ∫ , 
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is called the stiffness matrix of the element  (symmetrical, singular, semi-positive defined) with the range equal to the number of DOF of the 

element.  Matrix [B] depends on the position within the element so the integration requires the special numerical  techniques. 

Total strain energy of the structure is the sum of the finite elements energy: 

∑
=

=
LE

e
eUU

1

.   (LE- number of finite elements in the model) 

Using the global nodal displacement vector {q}                       [ ]{ }
11

1

2 nxn n n

U q qK
× ×

=    , 

where n is total number of DOF of the model and [ ]K  is the stiffness matrix of the model. 

 

The next step in FEM algorithms is finding the equivalent nodal forces {F} corresponding to the distributet loads {p} and {X}. 

The total potential energy of the model is: 

[ ]{ } { }
1 11 1

1

2z
n nn nn n

V U W q q q FK
× ×× ××

= − = −       , 

The minimum is determined by the conditions 

 0
i

V

q

∂ =
∂ , 

[ ]{ } { }FqK = .       (to be solved using neccesary displacement boundary conditions) 

The strain and stress components in each finite element  are found using the relations 

{ } [ ]{ } { } [ ]{ } [ ] [ ] { },
e e

B q D D B qε σ ε= = =  


