Exercise 3 Nonlinear material-

elastoplastic bending of a simply supported beam (residual stress after unloading)

A .Create GEOMETRY

- Blocks creation (upper and lower part of the LEFT side)
 Preprocessor>Modeling>Create>Volumes> Block>By Dimensions
 create two blocks (Fig. 1):
 X1= -½b, X2= ½b, Y1= 0, Y2= ½h, Z1= 0, Z2= ½l, and
 X1= -½b, X2= ½b, Y1= -½h, Y2= 0, Z1= 0, Z2= ½l
 Y1,Y2 Y-coor
 Y1,Y2 Y-Coor
- 1. merge the two blocks Preprocessor>Numbering Ctrls>Merge Items>All

B. FE DATA – preparation (element, material, meshing, LBC =Loads and Boundary Conditions)

- 2. Choose *SOLID186* finite element (Brick 20 node, element technology: *Reduced integration*)
- 3. Define linear elastic, isotropic material properties: E = 2.105MPa (Young's modulus) and v = 0.3 (Poisson's ratio) and nonlinear properties: a *bilinear kinematic hardening* model with $\sigma y = 250$ MPa (Yield stress) and $E_t = 100$ MPa (tangent modulus) (Fig. 2 and 3).

Bilinear Kinematic Hardening for Material Number 1						1 Table Dat T1=0.00	ta	BKIN Table Preview				Ansys 2023 R1	
Bilinear Kinematic Hardening for Material Number 1 Stress-Strain Options Rice's Hard. Rule							400 360 320 280						
Temperature Yield Stss Tang Mods	T1 250 100		Fig.	2			240 SIG 200 160 120 80 40 0 0	.5	1.5	32.5	Fig.	(×10*)	-3)
Add Temperature	Delete Temperature	Add Row	Delete Row	Cancel	Graph _{Help}					EPS		~	

4. Specify the density of discretization on lines and create a mapped hexahedral mesh (Fig. 4) (*Main Menu>Preprocessor>Meshing>Mesh Tool*)

- Save the mesh as an image (Plot> Elements, PlotCtrls> Redirect Plots-> To JPEG File ...)
- Apply boundary conditions: displacements on one keypoint (UX) and on a line (UY) (Solution> DefineLoads>Apply> Structural> Displacement> On ...) and symmetry conditions on TWO Areas (Solution> DefineLoads>Apply> Structural> Displacement>Symmetry B.C.)

and a pressure of 10/3 MPa on the top Area(Fig. 5 and 5a) (Solution> DefineLoads>Apply> Structural> Pressure>On Areas)

C. Set the analysis options , create Load Steps and run the Solution

Description of the analysis strategy:

A nonlinear static analysis of the elastoplastic beam will be done in three LoadSteps:

- **step 1**: to reach the yield stress at the top and bottom surfaces of the beam for $z = \frac{1}{2}l = 10 \text{ mm}$.
- **step 2**: the limit pressure is applied so that the theoretical stress in z direction at each point of the cross-section located in the middle of the beam length is equal to the yield stress (+/-).
- step 3: the pressure is set to zero to capture the residual stress and permanent deformation.

7. Define a new analysis as **STATIC**

(Main Menu>Solution>Analysis Type> New Analysis>Static)

a) And specify options in two forms (read below about the options):
 (Main Menu>Solution>Analysis Type> AnalysisOptions) – Large Deformations
 (Load Step Options>Time/Freq>Time and Substeps) – Automatic Time Stepping

The pressure in each load step is applied as 'ramped': 0->10/3, 10/3->5, 5->0 (MPa). In the 'Analysis Options' (Fig. 6) the Large Deformations are turned **ON** and in the 'Time and Substeps' the automatic time stepping is **turned OFF** (to get results in chosen time moments) – see Fig 7.

NOTE: In a static analysis, time has only **formal** meaning. The time value at the end of the first and second load steps reflect the pressure magnitude to make results more readable.

- b) Set and write Load Steps (apply Pressure as in point 6, and Options as in Fig 7 and 8):
- LS1: apply *p* = 10/3 MPa, specify proper TIME, NSUBST, FREQ (Fig. 7, 8 and 9), and LSNUM = 1,
- LS2: apply *p* = 5 MPa, specify proper TIME, NSUBST, FREQ, and LSNUM = 2,
- LS3: apply *p* = 0 MPa, specify proper TIME, NSUBST, FREQ, and LSNUM = 3,
 - 8. Settings below

Toolbar	Static or Steady-State Analysis	
SAVE_DB RESUM_DB QU	Nonlinear Options INLGEOMI Large deform effects INROPTI Newton-Raphson option Adaptive descent	Program chosen OFF
Preprocessor Solution	Linear Options [LUMPM] Use lumped mass approx?	□ No
 □ Analysis Type □ New Analysis □ Restart □ Sol'n Controls □ ExpansionPass 	IEQSLVI Equation solver Tolerance/Level - - valid for all except Sparse Solver	Sparse solver
 ☐ Analysis Options ☑ Define Loads ☑ Load Step Opts ☑ SE Management (CMS) 	Multiplier - - valid only for Precondition CG Matrix files -	0 Delete upon FINISH
 ■ Results Tracking ■ Solve ■ Manual Rezoning 	- valid only for Sparse [MSAVE] Memory Save -	□ Off
 ■ ADAMS Connection ■ Diagnostics ■ Abridged Menu 	- valid only for Precondition CG [PCGOPT] Level of Difficulty - - valid only for Precondition CG	Program Chosen 💌
 	IPCGOPTI Reduced I/O - - valid only for Precondition CG	Program Chosen 💌
 Session Editor Finish 	[PCGOPT] Memory Mode - - valid only for Precondition CG	Program Chosen 💌
Fig. 6	IPIVCHECK Pivots Check - valid only for Sparse and PCG Solv IPSTRESI Incl prestress effects?	□ No
4	ITOFFSTI Temperature difference-	0 Cancel Help

9. Solve the problem

(Solution-> Solve-> From LS Files; LSMIN = 1, LSMAX = 3, LSINC = 1)

D. POSTPROCESSING - results visualization

10. Read the results from selected Step

(Main Menu> General Postproc> Read Results> By Pick>) (Fig. 10)

11. Plot and save as images contour maps of the vertical displacement UY and stress component SZ at the end of each load step

(Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu> ...) (Fig. 11-13).

12. Set a user specified (uniform) range of the contour scale (Fig. 14). Take the values from next plot. Setting user scale from top Menu: *PlotCtrl>Style>Contours>UniformContours*

13. Plot and save as images contour maps of the equivalent plastic strain NLEPEQ at the end of the LS1 (left) and LS2 (right) (Fig. 15).

Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu>Plastic Strain> Equivalent plastic strain ...)

General remark – CREATING graphs of some values along a path

- a) Create a PATH (General Postproc>PathOperations>Define Path>ByNodes)
- b) Read the LS results and choose the value to graph (*General Postproc>PathOperations>MapOntoPath*). Remember to set the USER LABEL for the created graph curve.
- c) Post the curve (General Postproc>Path Operations>PlotPathItem>onGraph) selecting the LABELS of curves
- 14. Plot graphs of the displacement UY and stress component SZ at the end of LS1, LS2, LS3 as a function of the distance ALONG the length of BEAM and along THE HEIGHT and save the graphs (Fig. 16).

15. Time/History graphs (as it was done in Ex2_Transient_dynamics) Read the displacement UY and stress component SZ in the cross-section z = 100 as a function of time, (Main Menu>TimeHist Postpro>Variable Viewer) and save the graphs as images (Fig. 17).

4.401

4.134

4.935

4.668

TIME

5.469

5.736

5.202

3.867

3.6

OPTIONAL:

15. Repeat the calculation for a 2D model of the beam in a plane stress state using PLANE183 element (Fig. 18). Apply displacement UY = 0 on the left edge instead of at a keypoint.

16. Discuss results and write conclusions.